# 研究杂感 × VOSviewer(第二辑)

本文介绍了如何使用VOSviewer进行数据可视化,特别是基于WebofScience的共现分析。首先从WOS导出文献数据,然后进行筛选和保存。在VOSviewer中,进行了关键词、作者的共现分析,并展示了如何通过代码处理数据以进行学科共现分析。最终,通过调整参数和图像设置,完成了一次完整的学科共现网络的可视化展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

VOSviewer 数据可视化 ②

—— Web of Science共现分析

首先利用WOS导出文献

在这里插入图片描述
按理说应该对所选的文献进行一个筛选,首先是时间方面根据自己的研究情况来看,这里我采用的是出版年份所有时间的数据;同时对所检索的数据库也可以做个限定(比如在全部数据库中进行检索),但比如机构、国家这些信息,有的数据库中不会进行显示,而WOS的核心合集中数据就非常齐全,所以以后应该默认也是在WOS核心数据集中进行文献计量分析。
在这里插入图片描述
在这里插入图片描述
选择文献后,点击标记结果列表,可对所标记的文献进行初步筛选

下一步将标记结果保存为纯文本文件,在这里我选择自定义导出内容如下图所示:
在这里插入图片描述
保存文件后打开VOSviewer,进行下一步操作:

进行关键词、作者等的共现分析:

在这里插入图片描述
进行WOS的共现分析时,数据格式选择第二个,数据源默认选择第一个,接下来进行数据文件的导入工作:
在这里插入图片描述
在这里插入图片描述
在这里可以进行一个限制,限制1个作者最少在几篇文献里出现,这个数值设置得越低,包含的作者越多,数值越高包含的作者越少(在这里我设置为1,因为我的数据量有点少)
在这里插入图片描述
接下来就进行了作者的共现分析
在这里插入图片描述
这里又做了一个关键词共现分析,效果还不错诶~
在这里插入图片描述

学科共现:

在VOSviewer里是找不到学科共现这个做法的,在这里我们采用一段代码来解决。但在这之前,要先微调一下所获得的数据的格式:

首先要将记录导出为制表符分隔文件:

在这里插入图片描述
将 txt 文件用Excel来打开:

在这里插入图片描述
采用Tab符号进行分隔

在这里插入图片描述
学科部分的信息在WC列,学科之间用分号分隔:
在这里插入图片描述
在运行相关代码后,即可得到一个 .net 文件,接下来就用VOSviewer打开该文件即可:
(当然也可以用科学知识图谱软件来做,不过数据量过大会导致软件奔溃)
在这里插入图片描述
最后将图像内容稍微调整一下即可(记住上面的 attraction 要比下面的 reputation 值要大

在这里插入图片描述
于是就完成了学科的共现分析,棒哦~

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人生苦短我愛Python

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值