2021年秋季《概率论与数理统计》学习笔记

多维随机变量及之后内容、概念理解和误区澄清性质笔记可参考本专栏其他博客。

20211002更新至2.4连续型随机变量

  • “概率的概率”

20210930更新

  • 几何分布无记忆性证明
  • 泊松分布直观理解

20210925更新

  • 习题 1.4 1.4 1.4 8 8 8题( B a y e s \rm Bayes Bayes公式的应用)
  • 习题 1.5 1.5 1.5 2 2 2

20210920更新

  • B a y e s \rm Bayes Bayes公式的几何理解

20210913更新

  • P o i n c a r e ˊ \rm Poincar\acute e Poincareˊ公式证明
  • 1.3.5 1.3.5 1.3.5思考题

事件与概率

随机事件

样本空间:随机试验的所有可能结果

随机事件:某些可能结果组成的集合

常用证明技巧

A ⊂ B , B ⊂ A ⇒ A = B A\subset B, B\subset A \Rightarrow A=B \\ AB,BAA=B

A ‾ ‾ = A \overline{\overline{A}}=A A=A

样本空间

随机现象

在一定条件下并不总出现相同的结果

随机试验( E E E)​

对随机现象进行的实验和观察

特征
  1. 结果具有随机性
  2. 可以重复进行
样本点( ω \omega ω)​

随机试验的每一个可能结果

样本空间( Ω \Omega Ω

随机试验的所有样本点组成的集合

分类

根据样本空间所含样本点的个数,分为两类

  1. 离散样本空间:有限个或可列个样本点
  2. 连续样本空间:无穷不可列个样本点

随机事件

定义

随机试验的某些可能的结果组成的集合,即样本空间 Ω \Omega Ω​的一个子集

简称为事件,通常用大写字母表示

事件发生:某次随机试验出现的结果包含在随机事件中,即 ω ∈ A \omega \in A ωA

A ⊂ B A\subset B AB A A A发生必然导致 B B B发生

特殊事件
  1. 基本事件:只包含一个样本点
  2. 必然事件( Ω \Omega Ω:包含全部样本点,即样本空间
  3. 不可能事件( ∅ \emptyset ​):不含有任何样本点的事件
关系

A ∖ B = A ∩ B ‾ A\setminus B = A\cap \overline{B} AB=AB

A △ B = A ∖ B + B ∖ A A\triangle B = A\setminus B + B\setminus A AB=AB+BA

对偶公式

A ∪ B ‾ = A ‾ ∩ B ‾ A ∩ B ‾ = A ‾ ∪ B ‾ \begin{aligned} \overline{A\cup B} &= \overline{A}\cap \overline{B} \\ \overline{A\cap B} &= \overline{A}\cup \overline{B} \end{aligned} ABAB=AB=AB

事件域( F \mathcal{F} F

F \mathcal{F} F是由 Ω \Omega Ω的部分子集组成的集合类,若 F \mathcal{F} F满足:

  1. Ω ∈ F \Omega\in \mathcal{F} ΩF;
  2. A ∈ F A\in \mathcal{F} AF 蕴含 A ‾ ∈ F \overline{A}\in \mathcal{F} AF;
  3. 对任意的 n ≥ 1 n\geq 1 n1 A n ∈ F A_n\in \mathcal{F} AnF 蕴含 ⋃ i = 1 n ∈ F \bigcup_{i=1}^n\in \mathcal{F} i=1nF

则称 F \mathcal{F} F为样本空间 Ω \Omega Ω上的事件域,简称为事件域。

概率

定义

P ( ⋅ ) P(\cdot) P()​是定义在 F \mathcal{F} F上的实值函数,如果其满足下面三条公理:

  1. 非负性: P ( A ) ≥ 0 P(A)\ge 0 P(A)0

  2. 正则性: P ( Ω ) = 1 P(\Omega) = 1 P(Ω)=1

  3. 可列可加性:若 A 1 , A 2 , ⋯   , A n A_1,A_2,\cdots, A_n A1,A2,,An互不相容,则
    P ( ∑ n = 1 ∞ A n ) = ∑ n = 1 ∞ P ( A n ) P(\sum_{n=1}^\infin A_n) = \sum_{n=1}^\infin P(A_n) P(n=1An)=n=1P(An)

则称 P ( ⋅ ) P(\cdot) P()​为概率测度或概率

称三元总体 ( Ω , F , P ) (\Omega,\mathcal{F},P) (Ω,F,P)​为概率空间

性质

  1. 可减性:
    P ( A ∖ B ) = P ( A ) − P ( B ) P(A\setminus B) = P(A)-P(B) P(AB)=P(A)P(B)

  2. 加法公式:
    P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P(A\cup B) = P(A)+P(B)-P(A\cap B) P(AB)=P(A)+P(B)P(AB)

    P ( A ∪ B ∪ C ) = P ( A ) + P ( B ) + P ( C ) − P ( A ∩ B ) − P ( A ∩ C ) − P ( B ∩ C ) + P ( A ∩ B ∩ C ) P(A\cup B\cup C) = P(A)+P(B)+P(C)-P(A\cap B)-P(A\cap C)-P(B\cap C)+P(A\cap B \cap C) P(ABC)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)

    可推广得到
    P ( ⋃ k = 1 n A k ) = ∑ k = 1 n P ( A k ) − ∑ i < j P ( A i A j ) + ∑ i < j < k P ( A i A j A k ) + ⋯ + ( − 1 ) n − 1 P ( A 1 A 2 ⋯ A n ) \begin{aligned} P(\bigcup_{k=1}^n A_k) =& \sum_{k=1}^n P(A_k)-\sum_{i<j}P(A_iA_j) + \sum_{i<j<k}P(A_i A_j A_k) \\ &+\cdots + (-1)^{n-1}P(A_1 A_2\cdots A_n) \end{aligned} P(k=1nAk)=k=1nP(Ak)i<jP(AiAj)+i<j<kP(AiAjAk)++(1)n1P(A1A2An)
    即庞加莱( P o i n c a r e ˊ \rm Poincar\acute{e} Poincareˊ​​​)公式,可由数学归纳法证明。

    准备如下:
    A ∪ B ∪ C = ( A ∪ B ) ∪ C ( A ∪ B ) C = ( A C ) ∪ ( B C ) ( A C ) ∩ ( B C ) = A B C \begin{aligned} A\cup B\cup C&=(A\cup B)\cup C \\ (A\cup B) C&=(AC)\cup(BC) \\ (AC)\cap (BC) &= ABC \end{aligned} ABC(AB)C(AC)(BC)=(AB)C=(AC)(BC)=ABC
    下面用数学归纳法证明:

    1. n = 1 n=1 n=1时, P ( A 1 ) = P ( A 1 ) P(A_1)=P(A_1) P(A1)=P(A1)成立;

    2. 假设 n = k 0 n=k_0 n=k0时,
      P ( ⋃ k = 1 k 0 A k ) = ∑ k = 1 k 0 P ( A k ) − ∑ i < j P ( A i A j ) + ∑ i < j < k P ( A i A j A k ) + ⋯ + ( − 1 ) k 0 − 1 P ( A 1 A 2 ⋯ A k 0 ) \begin{aligned} P(\bigcup_{k=1}^{k_0} A_k) =& \sum_{k=1}^{k_0} P(A_k)-\sum_{i<j}P(A_iA_j) + \sum_{i<j<k}P(A_i A_j A_k) \\ &+\cdots + (-1)^{k_0-1}P(A_1 A_2\cdots A_{k_0}) \end{aligned} P(k=1k0Ak)=k=1k0P(Ak)i<jP(AiAj)+i<j<kP(AiAjAk)++(1)k01P(A1A2Ak0)
      则当 n = k 0 + 1 n=k_0+1 n=k0+1时,
      P ( ⋃ k = 1 k 0 + 1 A k ) = P ( ( ⋃ k = 1 k 0 A k ) ⋃ A k 0 + 1 ) = P ( ⋃ k = 1 k 0 A k ) + P ( A k 0 + 1 ) − P ( ( ⋃ k = 1 k 0 A k ) A k 0 + 1 ) = ∑ k = 1 k 0 P ( A k ) − ∑ i < j P ( A i A j ) + ⋯ + ( − 1 ) k 0 − 1 P ( A 1 A 2 ⋯ A k 0 ) + P ( A k 0 + 1 ) − P ( ⋃ k = 1 k 0 ( A k A k 0 + 1 ) ) \begin{aligned} P(\bigcup_{k=1}^{k_0+1} A_k) =& P((\bigcup_{k=1}^{k_0} A_k)\bigcup A_{k_0+1})\\ =& P(\bigcup_{k=1}^{k_0} A_k)+P(A_{k_0+1})-P((\bigcup_{k=1}^{k_0} A_k)A_{k_0+1}) \\ =& \sum_{k=1}^{k_0} P(A_k)-\sum_{i<j}P(A_iA_j)+\cdots + (-1)^{k_0-1}P(A_1 A_2\cdots A_{k_0}) \\ &+P(A_{k_0+1})-P(\bigcup_{k=1}^{k_0} (A_kA_{k_0+1})) \\ \end{aligned} P(k=1k0+1Ak)===P((k=1k0Ak)Ak0+1)P(k=1k0Ak)+P(Ak0+1)P((k=1k0Ak)Ak0+1)k=1k0P(Ak)i<jP(AiAj)++(1)k01P(A1A2Ak0)+P(Ak0+1)P(k=1k0(AkAk0+1))
      至此完成了一次项的求解。

      P ( ⋃ k = 1 k 0 ( A k A k 0 + 1 ) ) = P P(\bigcup_{k=1}^{k_0} (A_kA_{k_0+1}))=P P(k=1k0(AkAk0+1))=P,则
      P = ∑ k = 1 k 0 P ( A k A k 0 + 1 ) − ∑ i < j P ( A i A k 0 + 1 A j A k 0 + 1 ) + ⋯ + ( − 1 ) k 0 − 1 ( A 1 A k 0 + 1 ⋯ A k 0 A k 0 + 1 ) = ∑ k = 1 k 0 P ( A k A k 0 + 1 ) − ∑ i < j P ( A i A j A k 0 + 1 ) + ⋯ + ( − 1 ) k 0 − 1 ( A 1 ⋯ A k 0 A k 0 + 1 ) \begin{aligned} P =& \sum_{k=1}^{k_0}P(A_kA_{k_0+1})-\sum_{i<j}P(A_iA_{k_0+1}A_jA_{k_0+1})\\ &+\cdots+ (-1)^{k_0-1}(A_1 A_{k_0+1}\cdots A_{k_0}A_{k_0+1}) \\ =& \sum_{k=1}^{k_0}P(A_kA_{k_0+1})-\sum_{i<j}P(A_iA_jA_{k_0+1})\\ &+\cdots+ (-1)^{k_0-1}(A_1\cdots A_{k_0}A_{k_0+1}) \\ \end{aligned} P==k=1k0P(AkAk0+1)i<jP(AiAk0+1AjAk0+1)++(1)k01(A1Ak0+1Ak0Ak0+1)k=1k0P(AkAk0+1)i<jP(AiAjAk0+1)++(1)k01(A1Ak0Ak0+1)
      P P P代回原式,
      P ( ⋃ k = 1 k 0 + 1 A k ) = ∑ k = 1 k 0 + 1 P ( A k ) − ∑ i < j P ( A i A j ) + ( − 1 ) k 0 − 1 P ( A 1 A 2 ⋯ A k 0 ) − ( ∑ i < j P ( A i A j A k 0 + 1 ) + ⋯ + ( − 1 ) k 0 − 1 ( A 1 ⋯ A k 0 A k 0 + 1 ) ) = ∑ k = 1 k 0 + 1 P ( A k ) − ∑ i < j P ( A i A j ) + ∑ i < j < k P ( A i A j A k ) + ⋯ + ( − 1 ) k 0 P ( A 1 A 2 ⋯ A k 0 + 1 ) \begin{aligned} P(\bigcup_{k=1}^{k_0+1} A_k) =& \sum_{k=1}^{k_0+1} P(A_k) - \sum_{i<j}P(A_iA_j)+(-1)^{k_0-1}P(A_1 A_2\cdots A_{k_0}) \\ &-(\sum_{i<j}P(A_iA_jA_{k_0+1}) +\cdots+ (-1)^{k_0-1}(A_1\cdots A_{k_0}A_{k_0+1})) \\ =&\sum_{k=1}^{k_0+1} P(A_k)-\sum_{i<j}P(A_iA_j) + \sum_{i<j<k}P(A_i A_j A_k) \\ &+\cdots + (-1)^{k_0}P(A_1 A_2\cdots A_{k_0+1}) \end{aligned} P(k=1k0+1Ak)==k=1k0+1P(Ak)i<jP(AiAj)+(1)k01P(A1A2Ak0)(i<jP(AiAjAk0+1)++(1)k01(A1Ak0Ak0+1))k=1k0+1P(Ak)i<jP(AiAj)+i<j<kP(AiAjAk)++(1)k0P(A1A2Ak0+1)
      得证。

    若记
    S m = ∑ 1 ≤ i 1 < ⋯ < i m ≤ n P ( A i 1 ⋯ A i m ) S_m = \sum_{1\leq i_1<\cdots<i_m\leq n}P(A_{i_1}\cdots A_{i_m}) Sm=1i1<<imnP(Ai1Aim)
    P o i n c a r e ˊ \rm Poincar\acute{e} Poincareˊ公式可改写为
    P ( ⋃ k = 1 n A k ) = ∑ m = 1 n ( − 1 ) m − 1 S m P(\bigcup_{k=1}^n A_k) = \sum_{m=1}^n (-1)^{m-1} S_m P(k=1nAk)=m=1n(1)m1Sm

计算

常用计算技巧

P ( A ) = 1 − P ( A ‾ ) P(A) = 1-P(\overline A) P(A)=1P(A)

确定概率的方法
古典方法

P ( A ) = ∣ A ∣ ∣ Ω ∣ P(A) = \frac{|A|}{|\Omega|} P(A)=ΩA

适用条件
  1. Ω \Omega Ω为有限集
  2. 每个基本事件的发生是等可能的

由上述条件易得,在抛硬币、摸球等模型中常用古典方法确定概率。

例题
  1. (例 1.3.5 1.3.5 1.3.5)口袋中有 n − 1 n-1 n1个黑球、 1 1 1个白球,每次从口袋中随机地摸出一球,并换入一只黑球。求取第 k k k​​次时取到的球是黑球的概率。

    解 设 A k A_k Ak​表示事件“取第 k k k​次时取到的球是黑球”, k = 1 , 2 , ⋯ k=1,2,\cdots k=1,2,. ​则 A k ‾ \overline {A_{k}} Ak​表示事件“取第 k k k​​次时取到的球是白球”。易得 P ( A 1 ) = n − 1 n P(A_1) = \frac{n-1}{n} P(A1)=nn1​. 由于一旦取到白球,口袋中所有的球都会变为黑色,所以取到白球的条件是之前每次都摸到黑球,即
    A k ‾ = A 1 A 2 ⋯ A k − 1 A k ‾ , k = 1 , 2 , ⋯ \overline{A_k}=A_1 A_2\cdots A_{k-1}\overline{A_k}, k = 1,2,\cdots Ak=A1A2Ak1Ak,k=1,2,
    于是
    P ( A k ) = 1 − P ( A k ‾ ) = 1 − P ( A 1 A 2 ⋯ A k − 1 A k ‾ ) = 1 − ( n − 1 n ) k − 1 ⋅ 1 n , k = 2 , 3 , ⋯ \begin{aligned} P(A_{k}) &= 1-P(\overline{A_{k}}) \\ &= 1-P(A_1 A_2\cdots A_{k-1}\overline{A_k}) \\ &= 1-(\frac{n-1}{n})^{k-1}\cdot \frac{1}{n}, \quad k=2,3,\cdots \end{aligned} P(Ak)=1P(Ak)=1P(A1A2Ak1Ak)=1(nn1)k1n1,k=2,3,

    口袋中有两个白球,每次从口袋中随机地摸出一球,并换入一只黑球。求取第 k k k次时取到的球是黑球的概率。

    解 仿照例题做法,设 A k A_k Ak表示事件“取第 k k k次时取到的球是黑球”, k = 1 , 2 , ⋯ k=1,2,\cdots k=1,2,,则 A k ‾ \overline {A_{k}} Ak表示事件“取第 k k k次时取到的球是白球”。

    易得 P ( A 1 ‾ ) = 1 , P ( A 2 ‾ ) = 1 2 P(\overline{A_1}) = 1,P(\overline{A_2}) = \frac{1}{2} P(A1)=1P(A2)=21,自此起回归到 n = 2 n=2 n=2的例题模型,解得
    P ( A k ) = { 1 , k = 1 1 − 1 2 k − 1 , k = 2 , 3 , ⋯ P(A_k)= \begin{cases} 1, & k=1 \\ 1-\frac{1}{2^{k-1}}, & k=2,3,\cdots \end{cases} P(Ak)={1,12k11,k=1k=2,3,

  2. 一枚均匀的硬币,甲掷 n + 1 n+1 n+1次,乙掷 n n n​​次。求甲掷出的正面数比乙掷出的正面数多的概率。

    A A A B B B
    C C C D D D

    P ( A > B ) = P ( n + 1 − C > n − D ) = P ( C − 1 < D ) = P ( C ≤ D ) = 1 − P ( C > D ) = 1 − P ( A > B ) \begin{aligned} P(A>B) &= P(n+1-C>n-D) \\ &= P(C-1<D) \\ &= P(C\leq D) \\ &= 1-P(C>D) \\ &=1-P(A> B) \end{aligned} P(A>B)=P(n+1C>nD)=P(C1<D)=P(CD)=1P(C>D)=1P(A>B)

    P ( A > B ) = 0.5 P(A>B)=0.5 P(A>B)=0.5.

频率方法

f ( A ) = n ( A ) n f(A) = \frac{n(A)}{n} f(A)=nn(A)

几何方法

P ( A ) = L ( A ) L ( Ω ) P(A) = \frac{L(A)}{L(\Omega)} P(A)=L(Ω)L(A)

其中, L ( A ) L(A) L(A)表示 A A A的度量(距离函数)。

适用条件
  1. Ω \Omega Ω n n n维空间中的有界区域, L ( Ω ) > 0 L(\Omega)>0 L(Ω)>0.
  2. 每个样本点落在某个子区域的概率与该区域的度量大小成正比,与区域的形状和位置无关。
例题
  1. (例 1.3.13 1.3.13 1.3.13

    在这里插入图片描述

    其中,
    Ω = { ( x , y ) : 0 ≤ x ≤ 60 , 0 ≤ y ≤ 60 } \Omega = \{(x,y):0\leq x\leq 60,0\leq y\leq 60\} Ω={(x,y):0x60,0y60}

    A = { ( x , y ) ∈ Ω : ∣ x − y ∣ ≤ 20 } A = \{(x,y)\in \Omega:|x-y|\leq 20\} A={(x,y)Ω:xy20}

    通过本题我们发现,零概率事件未必是不可能事件,例如记 B = { ( x , y ) ∈ Ω : x − y = 20 } B = \{(x,y)\in \Omega:x-y=20\} B={(x,y)Ω:xy=20},由于 L ( B ) = 0 L(B)=0 L(B)=0,所以 P ( B ) = 0 P(B)=0 P(B)=0,但显然KaTeX parse error: Undefined control sequence: \O at position 6: B\neq\̲O̲,具体原理将在后续讨论。

  2. (例 1.3.15 1.3.15 1.3.15 B u f f o n \rm Buffon Buffon投针问题

    向画有距离维 d d d的一组平行线的平面任意投一长为 l ( l < d ) l(l<d) l(l<d)的针,求针与任一平行线相交的概率。

    在这里插入图片描述

    x x x表示针的中点到最近的平行线的距离, θ \theta θ表示针与此平行线的夹角。

    于是,针的位置可以表示为
    Ω = { ( x , θ ) : 0 ≤ x ≤ d 2 , 0 ≤ θ < π } . \Omega = \{(x,\theta):0\leq x\leq \frac{d}{2},0\leq \theta< \pi\}. Ω={(x,θ):0x2d,0θ<π}.
    A A A表示事件“针与任一平行线相交”,则
    A = { ( x , θ ) : 0 ≤ x ≤ l 2 s i n θ , 0 ≤ θ < π } . A=\{(x,\theta):0\leq x\leq \frac{l}{2}\rm sin\theta, 0\leq \theta< \pi\}. A={(x,θ):0x2lsinθ,0θ<π}.
    可得
    P ( A ) = L ( A ) L ( Ω ) = ∫ 0 π l 2 s i n θ d θ d 2 π = 2 l π d . P(A) = \frac{L(A)}{L(\Omega)}=\frac{\int_0^{\pi}\frac{l}2 \rm sin\theta\rm d\theta}{\frac{d}2 \pi} = \frac{2l}{\pi d}. P(A)=L(Ω)L(A)=2dπ0π2lsinθdθ=πd2l.

常见概率模型
不返回抽样(超几何模型)

设有 N N N个产品,其中 M M M个不合格。从中不返回任取 n n n个,则此 n n n个中有 m m m个不合格的概率为
C M m ⋅ C N − M n − m C N n \frac{C_M^m\cdot C_{N-M}^{n-m}}{C_N^n} CNnCMmCNMnm

返回抽样

设有 N N N个产品,其中 M M M个不合格。从中有返回任取 n n n个,则此 n n n个中有 m m m​个不合格的概率为
C n m M m ( N − M ) n − m N n C_n^m \frac{M^m(N-M)^{n-m}}{N^n} CnmNnMm(NM)nm

盒子模型

n n n不同的球放进 N N N个不同的盒子里,每个盒子放球数不限,则恰有 n n n个盒子各有一球的概率为
A N n N n = N ! N n ( N − n ) ! \frac{A_N^n}{N^n} = \frac{N!}{N^n(N-n)!} NnANn=Nn(Nn)!N!

配对模型

n n n个人、 n n n顶帽子,每人任取 1 1 1顶,至少一个人拿对自己帽子的概率

A k = A_k= Ak=“第 k k k个人拿对自己帽子”,应用加法公式,
P ( ⋃ k = 1 n A k ) = ∑ k = 1 n ( − 1 ) k − 1 1 k ! P(\bigcup_{k=1}^n A_k) = \sum_{k=1}^n (-1)^{k-1}\frac{1}{k!} P(k=1nAk)=k=1n(1)k1k!1

条件概率

定义

( Ω , F , P ) (\Omega, \mathcal{F}, P) (Ω,F,P)是给定的概率空间, B ∈ F B\in \mathcal{F} BF且满足 P ( B ) > 0 P(B)>0 P(B)>0,对任意的事件 A ∈ F A\in \mathcal{F} AF,令
P ( A ∣ B ) ≜ P ( A B ) P ( B ) . P(A|B) \triangleq \frac{P(AB)}{P(B)}. P(AB)P(B)P(AB).
P ( A ∣ B ) P(A|B) P(AB)为在事件 B B B发生的条件下,事件 A A A发生的条件概率

注意

P ( A ) P(A) P(A)为事件 A A A的无条件概率,也可视为条件概率 P ( A ∣ Ω ) P(A|\Omega) P(AΩ)

定理

条件概率是概率。

在概率空间 ( Ω , F , P ) (\Omega, \mathcal{F}, P) (Ω,F,P)中, B ∈ F B\in \mathcal{F} BF P ( B ) > 0 P(B)>0 P(B)>0.定义集函数
P B ( A ) = P ( A ∣ B ) P_B(A)=P(A|B) PB(A)=P(AB)
P B P_B PB也是定义在 F \mathcal{F} F上的概率。于是,

  • P ( A ‾ ∣ B ) = 1 − P ( A ∣ B ) P(\overline{A}|B) = 1-P(A|B) P(AB)=1P(AB)
  • P ( A ∪ C ∣ B ) = P ( A ∣ B ) + P ( C ∣ B ) − P ( A C ∣ B ) P(A\cup C|B) = P(A|B)+P(C|B)-P(AC|B) P(ACB)=P(AB)+P(CB)P(ACB)
  • P ( A ∖ C ∣ B ) = P ( A ∣ B ) − P ( A C ∣ B ) P(A\setminus C|B) = P(A|B)-P(AC|B) P(ACB)=P(AB)P(ACB)
乘法公式
  • A , B ∈ F A,B\in \mathcal{F} A,BF,且 P ( A ) > 0 , P ( B ) > 0 P(A)>0,P(B)>0 P(A)>0,P(B)>0,则
    P ( A B ) = P ( A ) P ( B ∣ A ) = P ( B ) P ( A ∣ B ) P(AB) = P(A)P(B|A)=P(B)P(A|B) P(AB)=P(A)P(BA)=P(B)P(AB)

  • n > 1 n>1 n>1 A 1 , A 2 , ⋯   , A n ∈ F A_1,A_2,\cdots,A_n\in \mathcal{F} A1,A2,,AnF,且 P ( A 1 A 2 ⋯ A n − 1 ) > 0 P(A_1 A_2\cdots A_{n-1})>0 P(A1A2An1)>0,则
    P ( A 1 A 2 ⋯ A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) ⋯ P ( A n ∣ A 1 ⋯ A n − 1 ) P(A_1 A_2\cdots A_n) = P(A_1)P(A_2|A_1)\cdots P(A_n|A_1\cdots A_{n-1}) P(A1A2An)=P(A1)P(A2A1)P(AnA1An1)

    • 条件概率版本

      B , A 1 , A 2 , ⋯   , A n ∈ F B,A_1,A_2,\cdots,A_n\in \mathcal{F} B,A1,A2,,AnF,且 P ( A 1 A 2 ⋯ A n − 1 ) > 0 P(A_1 A_2\cdots A_{n-1})>0 P(A1A2An1)>0​,则
      P ( A 1 A 2 ⋯ A n ∣ B ) = P ( A 1 ∣ B ) P ( A 2 ∣ A 1 B ) ⋯ P ( A n ∣ A 1 ⋯ A n − 1 B ) P(A_1 A_2\cdots A_n|B) = P(A_1|B)P(A_2|A_1B)\cdots P(A_n|A_1\cdots A_{n-1}B) P(A1A2AnB)=P(A1B)P(A2A1B)P(AnA1An1B)

全概率公式
  • 对于任意事件 A A A B B B,若 0 < P ( B ) < 1 0<P(B)<1 0<P(B)<1,则
    P ( A ) = P ( A ∣ B ) P ( B ) + P ( A ∣ B ‾ ) P ( B ‾ ) P(A) = P(A|B)P(B)+P(A|\overline B)P(\overline B) P(A)=P(AB)P(B)+P(AB)P(B)

  • 对于分割,
    P ( A ) = ∑ k = 1 n P ( B k ) P ( A ∣ B k ) P(A) = \sum_{k=1}^n P(B_k)P(A|B_k) P(A)=k=1nP(Bk)P(ABk)
    关键在于寻找一组事件来**“分割”样本空间**。

    • 条件概率版本
      P ( A ∣ C ) = ∑ k = 1 n P ( B k ∣ C ) P ( A ∣ B k C ) P(A|C) = \sum_{k=1}^n P(B_k|C)P(A|B_k C) P(AC)=k=1nP(BkC)P(ABkC)
贝叶斯( B a y e s \rm Bayes Bayes)公式
内容

B 1 , ⋯   , B n B_1,\cdots, B_n B1,,Bn为样本空间的一组分割,且 P ( B k ) > 0 P(B_k)>0 P(Bk)>0…有
P ( B j ∣ A ) = P ( B j ) P ( A ∣ B j ) ∑ k = 1 n P ( B k ) P ( A ∣ B k ) P(B_j|A) = \frac{P(B_j)P(A|B_j)}{\sum_{k=1}^n P(B_k)P(A|B_k)} P(BjA)=k=1nP(Bk)P(ABk)P(Bj)P(ABj)
通常, B 1 , ⋯ B n B_1,\cdots B_n B1,Bn是事件 A A A发生的原因。

P ( B k ) P(B_k) P(Bk):先验概率

P ( B k ∣ A ) P(B_k|A) P(BkA):后验概率

  • 条件概率版本
    P ( B j ∣ A C ) = P ( B j ∣ C ) P ( A ∣ B j C ) ∑ k = 1 n P ( B k ∣ C ) P ( A ∣ B k C ) P(B_j|AC) = \frac{P(B_j|C)P(A|B_j C)}{\sum_{k=1}^n P(B_k|C)P(A|B_kC)} P(BjAC)=k=1nP(BkC)P(ABkC)P(BjC)P(ABjC)
几何理解

在这里插入图片描述

例题( 1.3 1.3 1.3习题 8 8 8

解:记事件 A = A= A=“选中 5 5 5 5 5 5白的罐子”,事件 B = B= B=“取出 2 2 2个黑球”,已知 P ( A ∣ B ) = 1 7 P(A|B)=\frac{1}{7} P(AB)=71

在这里插入图片描述

独立性

两个事件的独立

定义

P ( A B ) = P ( A ) P ( B ) P(AB) = P(A)P(B) P(AB)=P(A)P(B)

  • 条件概率版本
    P ( A B ∣ C ) = P ( A ∣ C ) P ( B ∣ C ) P(AB|C)=P(A|C)P(B|C) P(ABC)=P(AC)P(BC)
    称为 A A A B B B C C C发生时条件独立。
注记
  • 对于独立事件, P ( A ) = P ( A ∣ B ) , P ( B ) = P ( B ∣ A ) P(A) = P(A|B),P(B) = P(B|A) P(A)=P(AB),P(B)=P(BA)

  • 零概率事件、必然事件与任何事件独立,不可能事件与任何事件独立。

    证明:设 B B B为任一事件,

    P ( A ) = 0 P(A)=0 P(A)=0时, P ( A B ) = 0 = 0 ⋅ P ( B ) = P ( A ) P ( B ) P(AB)=0=0\cdot P(B)=P(A)P(B) P(AB)=0=0P(B)=P(A)P(B),所以 A 、 B A、B AB独立;

    P ( A ) = 1 P(A)=1 P(A)=1时, P ( A ‾ ) = 0 P(\overline A)=0 P(A)=0,同理 A ‾ \overline A A B B B独立,于是 A 、 B A、B AB独立。

  • 0 − 1 0-1 01律)若事件 A A A与自身独立,则 P ( A ) = 0 P(A)=0 P(A)=0 1 1 1

定理

事件 A A A B B B独立 ⇔ \Leftrightarrow 事件 A ‾ \overline A A B B B独立 ⇔ \Leftrightarrow 事件 A A A B ‾ \overline B B独立 ⇔ \Leftrightarrow 事件 A ‾ \overline A A B ‾ \overline B B独立。

设有随机事件 A A A B B B C C C,满足 P ( B C ) > 0. P(BC)>0. P(BC)>0.事件 A A A B B B相互独立推不出 P ( A ∣ B C ) = P ( A ∣ C ) P(A|BC)=P(A|C) P(ABC)=P(AC)

多个事件的独立

定义
多个事件间的相互独立

n ( ≥ 2 ) n(\ge 2) n(2)个事件 A 1 , A 2 , ⋯   , A n ∈ F A_1,A_2,\cdots ,A_n\in \mathcal{F} A1,A2,,AnF相互独立,若对任意的整数 m : 2 ≤ m ≤ n m:2\leq m\leq n m:2mn及任意的 1 ≤ i 1 < ⋯ < i m ≤ n 1\leq i_1<\cdots <i_m\leq n 1i1<<imn
P ( A i 1 ∩ ⋯ ∩ A i m ) = P ( A i 1 ) ⋯ P ( A i m ) P(A_{i_1}\cap \cdots \cap A_{i_m})=P(A_{i_1})\cdots P(A_{i_m}) P(Ai1Aim)=P(Ai1)P(Aim)
都成立。

m m mm mm独立 ( 2 ≤ m ≤ n ) (2\leq m\leq n) (2mn)

n ( ≥ 2 ) n(\ge 2) n(2)个事件 A 1 , A 2 , ⋯   , A n ∈ F A_1,A_2,\cdots ,A_n\in \mathcal{F} A1,A2,,AnF m m mm mm独立,若对任意 1 ≤ i 1 < ⋯ < i m ≤ n 1\leq i_1<\cdots <i_m\leq n 1i1<<imn
P ( A i 1 ∩ ⋯ ∩ A i m ) = P ( A i 1 ) ⋯ P ( A i m ) P(A_{i_1}\cap \cdots \cap A_{i_m})=P(A_{i_1})\cdots P(A_{i_m}) P(Ai1Aim)=P(Ai1)P(Aim)
都成立,即任意 m m m个互异的事件同时发生的概率等于各自发生概率的乘积。

注记
  • n ( ≥ 2 ) n(\ge 2) n(2)个事件 A 1 , A 2 , ⋯   , A n ∈ F A_1,A_2,\cdots ,A_n\in \mathcal{F} A1,A2,,AnF相互独立,当且仅当这 n n n个事件两两独立,三三独立, ⋯ \cdots n n nn nn独立。
  • n ( ≥ 2 ) n(\ge 2) n(2)个事件 A 1 , A 2 , ⋯   , A n ∈ F A_1,A_2,\cdots ,A_n\in \mathcal{F} A1,A2,,AnF相互独立,当且仅当对任意的整数 m : 2 ≤ m ≤ n m:2\leq m\leq n m:2mn,其中的任意 m m m个互异的事件都相互独立。
定理

相互独立条件下的 P o i n c a r e ˊ \rm Poincar\acute{e} Poincareˊ公式:
P ( ⋃ k = 1 n A k ) = 1 − P ( ⋃ k = 1 n A k ‾ ) = 1 − P ( ⋂ k = 1 n A k ‾ ) = 1 − ∏ k = 1 n P ( A k ‾ ) = 1 − ∏ k = 1 n ( 1 − P ( A k ) ) . \begin{aligned} P(\bigcup_{k=1}^n A_k) &= 1-P(\overline{\bigcup_{k=1}^n A_k}) = 1-P(\bigcap_{k=1}^n \overline{A_k}) \\ &= 1-\prod_{k=1}^nP(\overline{A_k})= 1-\prod_{k=1}^n(1-P(A_k)). \\ \end{aligned} P(k=1nAk)=1P(k=1nAk)=1P(k=1nAk)=1k=1nP(Ak)=1k=1n(1P(Ak)).

试验的独立

定义
独立试验

试验 E 1 E_1 E1的任一结果与试验 E 2 E_2 E2的任一结果都是相互独立的事件。

贝努里( B e r n o u l l i \rm Bernoulli Bernoulli)试验

只有两个结果的试验。

n n n次独立重复的 B e r n o u l l i \rm Bernoulli Bernoulli试验为 n n n B e r n o u l l i \rm Bernoulli Bernoulli试验。

一维随机变量

定义在 Ω \Omega Ω上 实值函数 X = X ( ω ) X=X(\omega) X=X(ω)随机变量 r . v . r.v. r.v.),如果对任意的实数 x x x { ω ∈ Ω : X ( ω ) ≤ x } ∈ F \{\omega\in \Omega:X(\omega)\leq x\}\in \mathcal{F} {ωΩ:X(ω)x}F.

通俗地理解,随机变量就是数值化的不同的试验结果。

分布函数

X X X为随机变量,对任意的实数 x x x,称函数 F ( x ) = P ( X ≤ x ) F(x)=P(X\leq x) F(x)=P(Xx) x x x累积分布函数,即分布函数 d . f . d.f. d.f.)。

通俗地理解,分布函数 F ( x ) F(x) F(x)就是 X X X不超过 x x x的概率。

性质

  • 单调性

  • 有界性:对于任意实数 x x x 0 ≤ F ( x ) ≤ 1 , F ( + ∞ ) = 1 , F ( − ∞ ) = 0 0\leq F(x)\leq 1,F(+\infin) = 1, F(-\infin) = 0 0F(x)1,F(+)=1,F()=0,其中 F ( + ∞ ) ≜ lim ⁡ x → + ∞ F ( x ) , F ( − ∞ ) ≜ lim ⁡ x → − ∞ F ( x ) F(+\infin)\triangleq \lim_{x\rightarrow +\infin}F(x),F(-\infin)\triangleq \lim_{x\rightarrow -\infin}F(x) F(+)limx+F(x),F()limxF(x)

  • 右连续性:对于任意实数 x x x F ( x + 0 ) = F ( x ) F(x+0)=F(x) F(x+0)=F(x)

    可以理解, F ( x ) − F ( x − 0 ) F(x)-F(x-0) F(x)F(x0)= P ( X = x ) P(X=x) P(X=x) F ( x − 0 ) = P ( X < x ) F(x-0)=P(X<x) F(x0)=P(X<x).

定理

  • P ( a < X ≤ b ) = F ( b ) − F ( a ) P(a<X\leq b) = F(b)-F(a) P(a<Xb)=F(b)F(a)

  • P ( X = x ) = F ( x ) − F ( x − 0 ) , P ( X < x ) = F ( x − 0 ) P(X=x)=F(x)-F(x-0),P(X<x)=F(x-0) P(X=x)=F(x)F(x0),P(X<x)=F(x0)

于是,
P ( a ≤ X ≤ b ) = F ( b ) − F ( a ) + F ( a ) − F ( a − 0 ) = F ( b ) − F ( a − 0 ) P(a\leq X\leq b) = F(b)-F(a)+F(a)-F(a-0)=F(b)-F(a-0) P(aXb)=F(b)F(a)+F(a)F(a0)=F(b)F(a0)
其余同理。

离散型随机变量

定义

设随机变量 X X X的可能取值为有限个或可列个,记为 x 1 , x 2 , ⋯ x_1,x_2,\cdots x1,x2,,则称 X X X离散型随机变量 X X X具有离散型分布,并称 p k = P ( X = x k ) p_k=P(X=x_k) pk=P(X=xk) X X X的分布列或概率函数 p . f . p.f. p.f.)。

  • 分布列的性质
    • 非负性
    • 正则性: ∑ k = 1 ∞ p k = 1 \sum_{k=1}^\infin p_k=1 k=1pk=1

分布函数

F ( x ) = ∑ k : x k ≤ x p k F(x) = \sum_{k:x_k\leq x} p_k F(x)=k:xkxpk

(约定KaTeX parse error: Undefined control sequence: \O at position 11: \sum_{k\in\̲O̲} p_k=0)。

性质
  • 单调不降的阶梯函数
  • 间断点为 X X X的可能取值点,并在间断点处右连续,且在间断点处的跳跃高度即为 p ( x k ) p(x_k) p(xk)

特殊分布

二项分布

X X X表示 n n n重贝努利试验中成功的次数
P ( X = k ) = C n k p k ( 1 − p ) n − k P(X=k) = C_n^k p^k (1-p)^{n-k} P(X=k)=Cnkpk(1p)nk
记为 X ∼ b ( n , p ) X\sim b(n,p) Xb(n,p)

特别地,当 n = 1 n=1 n=1时,称 b ( 1 , p ) b(1,p) b(1,p)为两点分布或 0 − 1 \rm 0-1 01分布。

泊松分布

P ( X = k ) = λ k k ! e − λ P(X=k)=\frac{\lambda^k}{k!} e^{-\lambda} P(X=k)=k!λkeλ

X X X服从参数为 λ \lambda λ的泊松分布,记为 X ∼ P ( λ ) X\sim P(\lambda) XP(λ).

泊松定理

lim ⁡ n → + ∞ n p n = λ \lim_{n\rightarrow +\infin} np_n=\lambda limn+npn=λ,则对固定的正整数 k k k
lim ⁡ n → + ∞ C n k p n k ( 1 − p ) n − k = λ k k ! e − λ \lim_{n\rightarrow +\infin} C_n^kp_n^k(1-p)^{n-k}=\frac{\lambda^k}{k!} e^{-\lambda} n+limCnkpnk(1p)nk=k!λkeλ
n n n充分大、 p p p很小、 n p np np适中(通常要求 0.1 ≤ n p ≤ 10 0.1\leq np\leq 10 0.1np10)时,可作近似计算
P ( X = k ) = C n k p n k ( 1 − p ) n − k ≈ n p k k ! e − n p . P(X=k) = C_n^kp_n^k(1-p)^{n-k}\approx \frac{np^k}{k!}e^{-np}. P(X=k)=Cnkpnk(1p)nkk!npkenp.
这个链接讲得很好

λ \lambda λ是二项分布 ( n , p ) (n,p) (n,p)的数学期望,即 λ = n p \lambda=np λ=np,近似于样本均值。泊松分布可近似理解为 n n n趋向于正无穷的二项分布。

通常用来刻画稀有事件发生的次数或个数(当二项分布的 p p p较小时泊松分布和二项分布较为接近),和社会生活中各中服务的需求量。

超几何分布

P ( X = k ) = C M k ⋅ C N − M n − k C N n P(X=k) = \frac{C_M^k\cdot C_{N-M}^{n-k}}{C_N^n} P(X=k)=CNnCMkCNMnk

称为 X X X服从参数为 ( n , N , M ) (n,N,M) (n,N,M)的超几何分布,记为 X ∼ h ( n , N , M ) X\sim h(n,N,M) Xh(n,N,M).

对应不返回抽样模型。

固定 n , k n,k n,k,当 N → + ∞ N\rightarrow +\infin N+ M / N → p M/N\rightarrow p M/Np时,
C M k ⋅ C N − M n − k C N n → C n k p k ( 1 − p ) n − k . \frac{C_M^k\cdot C_{N-M}^{n-k}}{C_N^n}\rightarrow C_n^k p^k(1-p)^{n-k}. CNnCMkCNMnkCnkpk(1p)nk.

几何分布

X X X表示 n n n重贝努利试验中首次成功时的总试验次数
P ( X = k ) = p ( 1 − p ) k − 1 P(X=k) = p(1-p)^{k-1} P(X=k)=p(1p)k1
记为 X ∼ G e ( p ) X\sim Ge(p) XGe(p)

无记忆性

X ∼ G e ( p ) X\sim Ge(p) XGe(p),则
P ( X > m + n ∣ X > m ) = P ( x > n ) P(X>m+n|X>m)=P(x>n) P(X>m+nX>m)=P(x>n)
对任意 m , n ∈ N + m, n\in N^+ m,nN+成立。即:在一系列贝努利试验中,已知在前 m m m次未成功的条件下,接下来 n n n次试验仍未成功的概率与已经失败的次数 m m m无关

先证 P ( X > m ) = ( 1 − p ) m P(X>m) = (1-p)^m P(X>m)=(1p)m.

直观上理解, P ( X > m ) P(X>m) P(X>m)表示前 m m m次不成功,第 ( m + 1 ) ∼ ∞ (m+1)\sim \infin (m+1)次可能成功的概率之和,即前 m m m不成功的概率 ( 1 − p ) m (1-p)^m (1p)m

在此基础上计算,
P ( X > m ) = ∑ k = m + 1 ∞ P ( X = k ) = p ( 1 − p ) m + p ( 1 − p ) m + 1 ⋯ = p ∑ k = m ∞ ( 1 − p ) k = p ⋅ ( 1 − p ) m p = ( 1 − p ) m \begin{aligned} P(X>m) &= \sum_{k=m+1}^\infin P(X=k) = p(1-p)^m+p(1-p)^{m+1}\cdots \\ &= p\sum_{k=m}^\infin (1-p)^k = p\cdot \frac{(1-p)^m}{p} = (1-p)^m \end{aligned} P(X>m)=k=m+1P(X=k)=p(1p)m+p(1p)m+1=pk=m(1p)k=pp(1p)m=(1p)m
由条件概率公式
P ( A ∣ B ) = P ( A B ) P ( B ) , P(A|B) = \frac{P(AB)}{P(B)}, P(AB)=P(B)P(AB),

P ( X > m + n ∣ X > m ) = P ( X > m + n 且 X > m ) P ( X > m ) = P ( X > m + n ) P ( X > m ) = ( 1 − p ) m + n ( 1 − p ) m = ( 1 − p ) n = P ( X > n ) . \begin{aligned} P(X>m+n|X>m) &= \frac{P(X>m+n且X>m)}{P(X>m)} \\ &=\frac{P(X>m+n)}{P(X>m)} \\ &=\frac{(1-p)^{m+n}}{(1-p)^m} \\ &= (1-p)^n = P(X>n). \end{aligned} P(X>m+nX>m)=P(X>m)P(X>m+nX>m)=P(X>m)P(X>m+n)=(1p)m(1p)m+n=(1p)n=P(X>n).

负二项分布/ P a s c a l \rm Pascal Pascal分布

X X X表示贝努利试验中 r r r次成功时的总试验次数
P ( X = k ) = C k − 1 r − 1 p r ( 1 − p ) k − r P(X=k) = C_{k-1}^{r-1}p^{r}(1-p)^{k-r} P(X=k)=Ck1r1pr(1p)kr
记为 X ∼ N b ( r , p ) X\sim Nb(r, p) XNb(r,p).

例题( B a n a c h \rm Banach Banach火柴问题)

两盒火柴各有 n n n根,分别放在左右两个衣袋里。每次使用时,随机地从其中一盒抽出一根。试求首次发现其中一盒火柴已用完,而另一盒中剩下 k ( 0 ≤ k ≤ n ) k(0\leq k\leq n) k(0kn)根火柴的概率。

记事件 A A A=“取左边口袋中的火柴”,则 P ( A ) = 1 2 P(A)=\frac{1}{2} P(A)=21。首次发现左盒空,即 A A A n + 1 n+1 n+1次发生,于是记 X X X A A A发生 n + 1 n+1 n+1次时的试验次数, X ∼ N b ( n + 1 , 1 2 ) X\sim Nb(n+1, \frac{1}{2}) XNb(n+1,21).

记事件 B B B=“首次发现左边火柴已用完,而右边剩下 k ( 0 ≤ k ≤ n ) k(0\leq k\leq n) k(0kn)根火柴”,此时 A A A发生 n + 1 n+1 n+1次, A ‾ \overline A A发生 n − k n-k nk次,一共发生了 n + 1 + n − k = 2 n − k + 1 n+1+n-k=2n-k+1 n+1+nk=2nk+1次随机试验。则 B = { X = 2 n − k + 1 } B=\{X=2n-k+1\} B={X=2nk+1}.于是
P ( B ) = C 2 n − k + 1 − 1 n + 1 − 1 ( 1 2 ) n + 1 ( 1 − 1 2 ) 2 n − k + 1 − ( n + 1 ) = C 2 n − k n ( 1 2 ) 2 n − k + 1 \begin{aligned} P(B) &= C_{2n-k+1-1}^{n+1-1}(\frac{1}{2})^{n+1}(1-\frac{1}{2})^{2n-k+1-(n+1)} \\ &= C_{2n-k}^{n}(\frac{1}{2})^{2n-k+1} \end{aligned} P(B)=C2nk+11n+11(21)n+1(121)2nk+1(n+1)=C2nkn(21)2nk+1
由对称性,"首次发现右边火柴已用完,而左边剩下 k ( 0 ≤ k ≤ n ) k(0\leq k\leq n) k(0kn)根火柴"的概率与 P ( B ) P(B) P(B)相等,于是题目要求答案为 C 2 n − k n ( 1 2 ) 2 n − k C_{2n-k}^{n}(\frac{1}{2})^{2n-k} C2nkn(21)2nk.

连续型随机变量

定义

设随机变量 X X X的分布函数为 F ( x ) F(x) F(x),若存在非负函数 p ( x ) p(x) p(x),使得对任意的实数 x x x
F ( x ) = ∫ − ∞ x p ( t ) d t , F(x) = \int_{-\infin}^x p(t){\rm d}t, F(x)=xp(t)dt,
则称 X X X连续型随机变量或具有连续型分布;称 p ( x ) p(x) p(x)概率密度函数,简称为密度函数 p . d . f . \rm p.d.f. p.d.f.).

注记
  • 连续函数

  • P ( X = a ) = F ( a ) − F ( a − 0 ) = 0 P(X=a)=F(a)-F(a-0)=0 P(X=a)=F(a)F(a0)=0

    概率为 0 0 0的事件可能会发生

    点概率: 1 / + ∞ 1/+\infin 1/+

  • x x x F F F的可导点,则 p ( x ) = d F d x ( x ) p(x) = \frac{{\rm d}F}{{\rm d}x}(x) p(x)=dxdF(x).若 x x x F F F的不可导点, p ( x ) ≜ 0 p(x)\triangleq 0 p(x)0,但理论上可以为任意实数,所以概率密度函数是不唯一的。

  • 概率密度函数不是概率,而反映 X X X x x x附近取值可能性的大小,
    P ( X ∈ ( x − Δ x / 2 , x + Δ x / 2 ) ) = ∫ x − Δ x / 2 x + Δ x / 2 p ( t ) d t ≈ p ( x ) Δ x P(X\in(x-\Delta x/2, x+\Delta x/2)) = \int_{x-\Delta x/2}^{x+\Delta x/2} p(t){\rm d}t \approx p(x)\Delta x P(X(xΔx/2,x+Δx/2))=xΔx/2x+Δx/2p(t)dtp(x)Δx

容易发现,
P ( X ∈ D ) = ∫ D p ( x ) d x , P(X\in D) = \int_D p(x){\rm d}x, P(XD)=Dp(x)dx,
即一块面积

事实上,概率密度函数是概率的概率,具有实际意义的 p ( x 0 ) p(x_0) p(x0)其实是 p ( x 0 ≤ x ≤ x 0 + Δ x ) , Δ x → 0 p(x_0\leq x\leq x_0+\Delta x),\Delta x\rightarrow 0 p(x0xx0+Δx),Δx0,即一个人为选取的极限。

如果使用高度( y y y方向上的值)表示概率,那么对每个 x x x取极限,每个 y y y都将趋向于零,我们只能得到一条水平线,所以使用面积表示概率。

具体可以参考3b1b

性质
  • 非负性

  • 正则性
    ∫ − ∞ + ∞ p ( x ) d x = 1 \int_{-\infin}^{+\infin}p(x){\rm d}x=1 +p(x)dx=1

定理

p ( x ) p(x) p(x)为偶函数,即对任意的实数 x x x p ( x ) = − p ( x ) p(x)=-p(x) p(x)=p(x).于是, ∀ a ∈ R + \forall a\in R^+ aR+
F ( − a ) = 1 2 − ∫ 0 a p ( x ) d x , F ( − a ) + F ( a ) = 1. F(-a) = \frac{1}{2}-\int_0^a p(x){\rm d}x, \quad F(-a)+F(a) = 1. F(a)=210ap(x)dx,F(a)+F(a)=1.
特别地,
F ( 0 ) = 1 2 , P ( ∣ X ∣ ≤ a ) = 2 F ( a ) − 1 , P ( ∣ X ∣ ≥ a ) = 2 ( 1 − F ( a ) ) F(0) = \frac{1}{2},P(|X|\leq a) = 2F(a)-1,P(|X|\geq a) = 2(1-F(a)) F(0)=21,P(Xa)=2F(a)1,P(Xa)=2(1F(a))

从面积的角度出发容易验证

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值