2021秋季《数据结构》_EOJ 1086.哥尼斯堡的七桥问题

题目

哥尼斯堡是位于普累格河上的一座城市,它包含两个岛屿及连接它们的七座桥,如图所示。

可否走过这样的七座桥,而且每桥只走过一次?瑞士数学家欧拉(Leonhard Euler,1707-1783)最终解决了这个问题,并由此创立了拓扑学。

这个问题如今可以描述为判断欧拉回路是否存在的问题。欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个无向图,问是否存在欧拉回路?
在这里插入图片描述

思路

由于要求遍历每一条边,所以对于每一个点,进入这个点的边和离开这个点的边的数目必定相等。

要求满足两个条件

  • 每个点的度为偶数
  • 联通图,即没有孤立点

其中,第二个条件用并查集思想解决,最终集中超过一个点即为非联通图。

代码

#include<bits/stdc++.h>
using namespace std;

int find(int pre[], int x)
{
	int tmp = x;
	while (pre[tmp]!=tmp)
	{
		tmp = pre[tmp];
	}
	int k = x;
	while (k!=tmp)
	{
		int j = pre[tmp];
		pre[k] = tmp;
		k = j;
	}
	return tmp;
}

void join(int pre[], int x, int y)
{
	int rootx = find(pre, x);
	int rooty = find(pre, y);
	if (rootx != rooty)
	{
		pre[x] = y;
	}
}

int main()
{
	int n, m; cin >> n >> m;
	
	int* pre = new int[n + 1];
	for (int i = 1; i <= n; i++)
		pre[i] = i;
	int* a = new int[n + 1];
	memset(a, 0, sizeof(int) * (n + 1));
	for (int i = 0; i < m; i++)
	{
		int x, y; cin >> x >> y;
		if (find(pre, x) != find(pre, y))
			join(pre, x, y);
		a[x]++, a[y]++;
	}

	int flag = 1;
	int cnt = 0;
	// 判断联通
	for (int i = 1; i <= n; i++)
	{
		if (pre[i] == i)
			cnt++;
	}
	if (cnt != 1)
		flag = 0;
	
	// 判断偶数度
	if (flag)
	{
		for (int i = 1; i <= n; i++)
		{
			if (a[i] == 0 || a[i] % 2 == 1)
			{
				flag = 0;
				break;
			}
		}
	}

	cout << flag << endl;
	return 0;


}
### 关于EOJ DNA排序问题的解题思路 在处理EOJ中的DNA排序问题时,主要挑战在于如何高效地完成字符串数组的排序以及去重操作。由于题目涉及两个测试点可能因时间复杂度较高而超时,因此需要优化算法设计。 #### 数据结构的选择 为了降低时间复杂度并提高效率,可以引入`std::map`或者`unordered_map`来辅助实现去重功能[^1]。这些数据结构能够快速判断某项是否存在集合中,并支持高效的插入和查找操作。具体来说: - 使用 `std::set` 可以自动去除重复元素并对结果进行升序排列; - 如果还需要自定义比较逻辑,则可以选择基于哈希表的数据结构如 `unordered_set` 配合手动排序。 #### 排序策略 对于给定的一组DNA序列(通常表示为长度固定的字符串),按照字典顺序对其进行排序是一个常见需求。C++标准库提供了非常方便的方法来进行此类任务——即利用 `sort()` 函数配合合适的比较器函数对象或 lambda 表达式来指定所需的排序规则。 下面展示了一个简单的例子用于说明如何读取输入、执行必要的预处理步骤(包括但不限于删除冗余条目),最后输出经过整理的结果列表: ```cpp #include <bits/stdc++.h> using namespace std; int main(){ set<string> uniqueDNAs; string line, dna; while(getline(cin,line)){ stringstream ss(line); while(ss>>dna){ uniqueDNAs.insert(dna); // 自动过滤掉重复项 } } vector<string> sortedUnique(uniqueDNAs.begin(),uniqueDNAs.end()); sort(sortedUnique.begin(),sortedUnique.end()); for(auto it=sortedUnique.cbegin();it!=sortedUnique.cend();++it){ cout<<*it; if(next(it)!=sortedUnique.cend())cout<<" "; } } ``` 上述程序片段实现了基本的功能模块:从标准输入流逐行解析得到各个独立的DNA片段;借助 STL 容器特性轻松达成无重复记录维护目的;最终依据字母大小关系重新安排各成员位置后再统一打印出来[^3]。 #### 学习延伸至自然语言处理领域 值得注意的是,在计算机科学特别是机器学习方向上,“上下文”概念同样重要。例如 Word2Vec 这样的技术就是通过考察周围词语环境来捕捉特定词汇的意义特征[^2]。尽管两者应用场景差异显著,但从原理层面看均体现了对局部模式挖掘的关注。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值