题目
哥尼斯堡是位于普累格河上的一座城市,它包含两个岛屿及连接它们的七座桥,如下图所示。

可否走过这样的七座桥,而且每桥只走过一次?瑞士数学家欧拉(Leonhard Euler,1707—1783)最终解决了这个问题,并由此创立了拓扑学。
这个问题如今可以描述为判断欧拉回路是否存在的问题。欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个无向图,问是否存在欧拉回路?
输入格式:
输入第一行给出两个正整数,分别是节点数N (1≤N≤1000)和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。
输出格式:
若欧拉回路存在则输出1,否则输出0。
输入样例1:
6 10
1 2
2 3
3 1
4 5
5 6
6 4
1 4
1 6
3 4
3 6
输出样例1:
1
输入样例2:
5 8
1 2
1 3
2 3
2 4
2 5
5 3
5 4
3 4
输出样例2:
0
解法
思路
如果一个图需要满足以下两个条件,那么欧拉回路必存在,任意一个不满足,则不存在。(当然这是充要条件)
- 每个顶点的度为偶数
- 图是连通的
要想判断条件一,可以给图的类型中加一个Data数组,用来记录每个顶点的度,这个记录过程可以放在插入边InsertEdge函数中进行。
要想判断条件二,可以用深度遍历,只要从任意一点出发遍历后,每个顶点都访问到,那么图就是连通的。
因此这是一道简单的图的问题。注意在文本的实现中,Graph->G, Graph->Data, Visited都是动态数组,这样不浪费空间。
实现
#include<stdio.h>
#include<stdlib.h>
#define INFINITY 100000
#define MAXN 1000
typedef int Vertex;
typedef int WeightType;
typedef int DataType;
typedef struct GNode *PtrToGNode;
typedef PtrToGNode MGraph;
struct GNode
{
int Nv;
int Ne;
WeightType **G;
DataType *Data; //calculate the degree of vertex
};
typedef struct ENode *PtrToENode;
typedef PtrToENode Edge;
struct ENode
{
Vertex V1, V2;
WeightType W;
};
MGraph CreateGraph(int VertexNum)
{
int i,j;
MGraph Graph = (MGraph)malloc(sizeof(struct GNode));
Graph->Nv = VertexNum;
Graph->G = (WeightType **)malloc(Graph->Nv*sizeof(WeightType *));
for(i=0; i<Graph->Nv; i++)
{
Graph->G[i] = (WeightType*)malloc(Graph->Nv*sizeof(WeightType));
}
for(i=0; i<Graph->Nv; i++)
{
for(j=0; j<Graph->Nv; j++)
Graph->G[i][j] = INFINITY;
}
Graph->Data = (DataType *)malloc(Graph->Nv*sizeof(DataType));
for(i=0; i<Graph->Nv; i++)
Graph->Data[i] = 0;
return Graph;
}
void InsertEdge(MGraph Graph, Edge E)
{
Graph->G[E->V1][E->V2] = E->W;
Graph->G[E->V2][E->V1] = E->W;
Graph->Data[E->V1]++;
Graph->Data[E->V2]++;
}
MGraph BuildGraph()
{
int i,N,M;
scanf("%d %d", &N, &M);
MGraph Graph = CreateGraph(N);
Graph->Ne = M;
if(Graph->Ne != 0)
{
Edge E = (Edge)malloc(sizeof(struct ENode));
for(i=0; i<Graph->Ne; i++)
{
scanf("%d %d", &E->V1, &E->V2);
E->V1--;
E->V2--;
E->W = 1;
InsertEdge(Graph, E);
}
}
return Graph;
}
int *Visited;
void DFS(MGraph Graph, Vertex V)
{
Visited[V] = 1;
int i;
for(i=0; i<Graph->Nv; i++)
{
if(Graph->G[V][i] == 1 && Visited[i] == 0) //V is adjacent to i, and i is not visited
{
DFS(Graph, i);
}
}
}
int main()
{
int i;
MGraph Graph = BuildGraph();
Visited = (int *)malloc(Graph->Nv*sizeof(int));
for(i=0; i<Graph->Nv; i++)
Visited[i] = 0;
DFS(Graph, 0);
int flag;
flag = 1;
for(i=0; i<Graph->Nv; i++)
{
if(Visited[i] == 0 || Graph->Data[i]==0 || Graph->Data[i]%2 != 0)
{
flag = 0;
break;
}
}
printf("%d", flag);
return 0;
}
本文探讨了哥尼斯堡的七桥问题,这是一个经典的图论问题,由数学家欧拉解决并创立了拓扑学。文章详细介绍了如何判断一个无向图是否存在欧拉回路的方法,包括每个顶点的度数必须为偶数和图必须是连通的两个关键条件。通过具体的代码实现,展示了如何检查这些条件以确定欧拉回路的存在性。
2870

被折叠的 条评论
为什么被折叠?



