[机器学习]评价指标:召回率(Recall)、准确率(Precision)、f1-score、Hit Ratio(HR)、NDCG、MAP(MARR)

本文介绍了人工智能算法中常用的评价指标,如召回率(Recall)、精确率(Precision)、F1-score、Hit Ratio(HR)、Normalized Discounted Cumulative Gain(NDCG)和平均精度均值MAP,这些指标用于评估模型的性能,特别是在时空数据挖掘和推荐系统中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


在人工智能算法中,算法实现,训练模型完成后,为了判定算法的好坏,需要对训练的模型进行评价,本文介绍一些用于时空数据挖掘(STDM)中POI预测的评价标准。

  1. 场景假设

假如某班有女生20人,男生80人,共计100人.目标是找出所有女生,某人(分类器)挑选出50个人,其中20人是女生,另外还错误的把30个男生也当作女生挑选出来了。针对上述场景,现在换一种说法:总人数是100人,他把其中70人(20女+50男)判定正确了。

  1. 情况分类

按照上面例子,我们需要从一个班级中寻找所有女生,如果把这个任务当成一个分类器的话,那么女生就是我们需要的,而男生不是,所以我们称女生为"正类",而男生为"负类"。分类表格如下:

真实为正类/女 真实为负类/男
判定为正类/女 20(TP) 30(FP)
判定为负类/男 0(FN) 50(TN)

其中:

true positives(TP 正类判定为正类,例子中就是正确的判定"这位是女生")
false positives(FP 负类判定为正类,“存伪”,例子中就是分明是男生却判断为女生)
false negatives(FN 正类判定为负类,“去真”,例子中就是女生被判别成男生)
true negatives(TN 负类判定为负类,例子中就是一个男生被判断为男生)


召回率(Recall)

指的是所有真实为正类(TP+FN)中,被判定为正类(TP)占的比例。

在这里插入图片描述


精确率(Precision)

指的是所有被判定为正类(TP+FP)中,真实的正类(TP)占的比例。

在这里插入图片描述


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值