目录
在人工智能算法中,算法实现,训练模型完成后,为了判定算法的好坏,需要对训练的模型进行评价,本文介绍一些用于时空数据挖掘(STDM)中POI预测的评价标准。
- 场景假设
假如某班有女生20人,男生80人,共计100人.目标是找出所有女生,某人(分类器)挑选出50个人,其中20人是女生,另外还错误的把30个男生也当作女生挑选出来了。针对上述场景,现在换一种说法:总人数是100人,他把其中70人(20女+50男)判定正确了。
- 情况分类
按照上面例子,我们需要从一个班级中寻找所有女生,如果把这个任务当成一个分类器的话,那么女生就是我们需要的,而男生不是,所以我们称女生为"正类",而男生为"负类"。分类表格如下:
真实为正类/女 | 真实为负类/男 | |
---|---|---|
判定为正类/女 | 20(TP) | 30(FP) |
判定为负类/男 | 0(FN) | 50(TN) |
其中:
true positives(TP 正类判定为正类,例子中就是正确的判定"这位是女生")
false positives(FP 负类判定为正类,“存伪”,例子中就是分明是男生却判断为女生)
false negatives(FN 正类判定为负类,“去真”,例子中就是女生被判别成男生)
true negatives(TN 负类判定为负类,例子中就是一个男生被判断为男生)
召回率(Recall)
指的是所有真实为正类(TP+FN)中,被判定为正类(TP)占的比例。
精确率(Precision)
指的是所有被判定为正类(TP+FP)中,真实的正类(TP)占的比例。