数值分析与压缩感知
文章平均质量分 59
李锐博恩
退网中
展开
-
【 压缩感知 】OMP恢复算法
一个经典的Matlab程序:clcclearclose all % 1-D信号压缩传感的实现(正交匹配追踪法Orthogonal Matching Pursuit) % 测量数M>=K*log(N/K),K是稀疏度,N信号长度,可以近乎完全重构 % input signal x % measurement vector s % 待重构的谱域(变换域...原创 2018-10-18 16:18:58 · 3695 阅读 · 0 评论 -
一次综合的、深入浅出的压感的回顾与总结
压感是什么?压感即压缩采样(Compressive Sampling),也叫压缩感知( Compressive Sensing ),后面具体解释或猜测为什么这么个叫法?直接上图:压感的作用就是将一个长的信号()变成(压缩采样)成一个短的多的信号(),而且满足一定的条件(后面具体讨论),能够由短的信号()精确地恢复长的信号(),而重构需要做得仅仅是解一个优化问题。——————————————————...原创 2018-06-13 23:39:58 · 2025 阅读 · 0 评论 -
压缩感知的阶段性总结
压缩感知的阶段性总结 由于传统的信号处理框架,对信号的采样必须满足奈奎斯特速率,随着数据量的增大,这种框架下的信号处理会极大的加大ADC的压力,同时大量的数据冗余会使数据存储代价增大。为了弥补奈奎斯特框架的缺陷,各种其他方案出现,这就包括压缩感知框架下的信号处理方案。目前对压感的研究,信号的输入是离散的有限长的能稀疏表示的信号,或者信号本身就是稀疏的,这是在压感框架下处理信号的前提。压感的三个关键...原创 2018-06-11 16:54:15 · 2711 阅读 · 3 评论 -
《压缩感知理论及其研究进展》读书笔记
说实话,今天阅读了这篇论文之后,即赞叹又疑惑,想了好久才写这篇读书笔记的,而这想了好久是在想要不要回避这篇论文,最后还是决定,提出自己的疑惑与不适,去面对吧。可能是由于关于压感的论文大家写的很多了,重复描述是一个问题,可压感就是压感,基本的问题怎么不重复呢?于是各种表达方式出现了,本文就是一种,和我一直以来看的关于压感的某些描述不太一样,这让我觉得不适应,且这种不一样,也只是在形式上做的文章,过多...原创 2018-06-10 20:37:02 · 4267 阅读 · 2 评论 -
《模拟信息转换器(AIC)的实现技术研究》读书笔记
此论文的出现十分有必要,由于压缩感知要处理的信号是有限维的离散信号,并且是可以压缩(可稀疏表示)的离散信号,若以奈奎斯特速率采样模拟信号得到离散信号,再以压感的框架去处理,这如何体现出压感的优势呢?为此,我将从此论文出发,试图找到答案。模拟信息转换器的实现技术研究直入要害,提出压感的问题(本人觉得提出的问题很良心,正是我想问的却无法系统表达的问题):压感采样理论利用观测矩阵 ,采样 N * 1 ...原创 2018-06-09 23:57:37 · 3504 阅读 · 0 评论 -
压缩感知专题笔记——目录
顺序持续修改中压缩感知系列笔记《序言》一、压缩感知论文读书笔记1.1 《压缩感知回顾与展望》读书笔记1.2 《基于压缩传感的匹配追踪重建算法研究》读书笔记1.3二、压缩感知随笔2.1 我能怎么学习压缩感知?2.2 学习压缩感知比较好的文章链接收藏2.3三、压缩感知好文收藏3.1 压缩感知“Hello World”代码初步学习3.2 “压缩感知” 之 “Hello World”3.3 ...原创 2018-06-09 15:38:49 · 2094 阅读 · 0 评论 -
《基于压缩传感的匹配追踪重建算法研究》读书笔记
基于压缩传感的匹配追踪重建算法研究1、压缩感知与传统数据获取和处理过程比较:压缩感知理论表明,在对信号获取的同时,就对数据进行适当的压缩。传统的数据获取和处理过程主要包括:采样、压缩、传输、解压缩,且采样过程必须满足奈奎斯特采样定律,这种方式采样数据量大,先采样再压缩,浪费大量的传感元,时间和存储空间,相较而下,压缩感知理论针对可稀疏表示的信号,将数据采集和数据压缩合二为一,在信号处理...原创 2018-06-08 14:15:02 · 2418 阅读 · 9 评论 -
《压缩感知回顾与展望》读书笔记
压缩感知回顾与展望在众多压感的研究中,其中各个矩阵的命名不一,这篇文章就算是对这些命名的一个统一吧,个人觉得还挺贴切。1、N维实信号 x 的稀疏表示: 其中 叫正交基字典矩阵, 叫系数向量。2、采用一个与正交基字典 不相关的观测矩阵 , 是一个 的扁矩阵,即,, 的每一行可以看作一个传感器,它与系数相乘,获取了信号的部分信息。对信号 x 执行一个压缩观测,就可以得到 M 个线性观测 ,这些...原创 2018-06-07 16:40:58 · 2292 阅读 · 1 评论 -
学习压缩感知比较好的文章链接收藏
一、首推:压缩感知“Hello World”代码初步学习本文真的对我理解压感起到很大的帮助,特别在OMP(正交匹配追踪重构算法)算法的讲解中,尤为精彩,我从来没有见过哪个博主能如此认真的去一行一行地解释,解读代码,我对此十分感谢。个人认为,能有超过70%注释的代码才是负责人的代码,当然也是好的代码。本文做到的不仅如此,简直优秀。为此,我一行一行的抄写了里面的代码。精彩节选:1. 原始信号x是什么?...原创 2018-06-06 21:38:05 · 2219 阅读 · 4 评论 -
Gauss-Seidel迭代求解线性方程组
高斯—赛德尔迭代法考试比较多,所以考虑再三,还是单独提取出来独立一篇,方便查阅,突出重点。首先举例引入:通过手动求解下面的线性方程组得到精确解:再用高斯—赛德尔迭代法求解比较:本人拙见,将每一步迭代出来的最新结果充分利用,正如上图所说,高斯—赛德尔迭代法认为最新计算出来的分量可能比旧的分量要好些。事实上是否如此,另当别论,这种思想也有其道理。————————————————————————————...原创 2018-07-08 00:02:08 · 35544 阅读 · 1 评论 -
迭代法求解线性方程组
一、迭代法的一般形式相关知识了解:向量序列的收敛性:向量序列收敛于某个向量,当且仅当该向量序列的每个元素都收敛于相应的向量的元素:矩阵序列的收敛性:矩阵序列收敛某个矩阵,当且仅当该矩阵序列的每个元素收敛于相应矩阵的相应元素;————————————————————————————————————————————————————迭代法的一般形式:提出问题:——————————————————————...原创 2018-07-07 15:16:16 · 18930 阅读 · 9 评论 -
线性方程组的直接法总结
方法总览:————————————————————————————————————————————————————对应博文:1 高斯消去法2 高斯消去法的矩阵分析3 高斯列主元消去法4 Doolittle分解法5 三对角线线性方程组的追赶法————————————————————————————————————————————————————精简总结:...原创 2018-07-07 00:02:46 · 3538 阅读 · 0 评论 -
三对角线性方程组的追赶法
提出背景:在一些实际问题中,例如解常微分方程边值问题、求热传导方程及三次样条插值函数等,都会遇到系数矩阵是三对角矩阵的方程组对于这种特殊的方程组,若还用原有的一般方法来求解,势必造成存储和计算的浪费。三对角性方程组以及三对角线矩阵定义:下面的这句话是良心话:举例练习:...原创 2018-07-06 23:53:17 · 11101 阅读 · 0 评论 -
矩阵的直接LU分解法
上篇博文由高斯消去法的矩阵形式推出了矩阵的LU分解:矩阵的三角分解法;实际上,可以直接处理矩阵,得到矩阵的LU分解,这就是矩阵的直接LU分解;直接通过矩阵的元素得到计算LU元素的递推公式,不需要任何中间步骤。学过矩阵论的都知道矩阵的LU直接分解法,数值分析这里又来了一遍,说明很重要了,事实上,这部分内容真的一点都不难,记得当初大家一起复习矩阵论时候,对这块内容,大家的分解方法各种各样,都认为自己的...原创 2018-07-06 23:46:00 · 36348 阅读 · 3 评论 -
矩阵的三角分解(LU)法(高斯消去法的矩阵形式分析)
本博文讲的是Guass消去法的矩阵形式,和这篇博客相互呼应:高斯消去法。Guass消去法的矩阵形式:这便推导出了矩阵的LU分解;之后便是求解这两个三角形线性方程组的问题了,这是十分容易求解的:这里同时提出了一个问题,就是有的矩阵不能作LU分解,也就是高斯消去法不能用的时候,那什么样的方程组能用高斯消去法呢?也就是什么样的矩阵能进行LU分解呢?(这种高维的高斯消去法的矩阵形式的推导还真是很麻烦,勉强...原创 2018-07-06 22:47:49 · 12844 阅读 · 3 评论 -
Guass列主元消去法求解线性方程组
上篇博文讲到:Guass消去法求解线性方程组,也提到了此方法求解线性方程组存在的问题,因此有如下:基本思想:看不懂没关系,直接看下面的例题,会有更直观的理解,然后再回到这里继续看。选主元的步骤(编程使用):例图形象理解:...原创 2018-07-06 21:45:21 · 13325 阅读 · 1 评论 -
Guass消去法求解线性方程组
基本思想:具体消元过程:回代解方程组:高斯顺序消去法求解线性方程组的计算公式:存在的问题:这种方法不是很实用,但是通常讲求解线性方程组都会先提到这种方法,这是基础,还是需要看看。...原创 2018-07-06 21:20:30 · 3583 阅读 · 0 评论 -
雅克比(Jacobi)迭代法求解线性方程组
长博文不利于翻阅,于是又将Jacobi迭代法单独出来了。这篇博文把高斯—赛德尔迭代法和雅克比迭代法都放到一起了,个人觉得看着有点累。(迭代法求解线性方程组),不过还是要看的,因为它引出了迭代法。进入主题:首先通过例子引入:雅克比迭代法的一般形式:雅克比迭代的矩阵形式:矩阵形式也是根据一般形式推来的。...原创 2018-07-08 15:45:41 · 110275 阅读 · 10 评论 -
龙贝格求积法
基本思想:首先有梯形序列构造辛普森序列:在辛普森序列的基础上构造科特斯序列,再由科特斯序列构造龙贝格序列:龙贝格算法表以及龙贝格公式:举例:...原创 2018-07-08 15:51:29 · 7402 阅读 · 0 评论 -
非线性方程求根的牛顿法
牛顿迭代法的推导:线性方程容易求解,但对于非线性方程,若能用某个线性方程来近似,求出该线性方程的解,即可得到原非线性方程的一个近似解。设已知非线性函数的一个近似零点是,用在该点的Taylor展开式的线性部分来近似,即得到:将线性近似函数的零点记作,并作为的一个新零点,有:如此反复,得到求解非线性方程=0的迭代公式:称为牛顿迭代公式。显然牛顿迭代公式要求在根的某个领域内,函数的一阶导数.牛顿迭代法的...原创 2018-07-08 17:08:20 · 7483 阅读 · 0 评论 -
数值分析考试死记硬背点总结
说明:这里只是为了考试而补充的必记知识点,系统的复习还是要看:数值分析专题目录第一部分:1、高斯公式的高斯点:2、最佳平方逼近的区间变换问题:一般地,求函数f(x)在区间[a,b]上的n次最佳平方逼近时,只要作代换将区间[a,b]变为[-1,1],就可以取Legendre正交多项式作为基函数,求出在[-1,1]上的最佳平方逼近,从而得到f(x)在[a,b]上的最佳平方逼近函数。3、Legendre...原创 2018-07-08 23:42:03 · 38625 阅读 · 2 评论 -
数值积分之初步介绍
为什么要数值积分呢?也就是数值积分的必要性问题?数值积分的必要性源自计算函数的原函数的困难性。利用原函数计算定积分的方法建立在牛顿—莱布尼兹之上。然而,原函数可以用初等函数表示的函数为数不多,大部分的可积函数的积分无法用初等函数表示,甚至无法有解析表达式。不仅如此,在很多实际应用中,只能知道积分函数在某些特定点的取值,比如天气测量中的气温、湿度、气压等,医学测量中的血压、浓度等等。另外,积分函数有...原创 2018-07-04 22:13:25 · 7409 阅读 · 0 评论 -
数值积分之插值型求积公式
上篇博文中(数值积分初步介绍)已经初步介绍了数值积分,下面介绍一种求解数值积分的方法——插值型求积公式。插值型求积公式就是利用拉格朗日插值法对被积函数进行插值近似,求其插值函数来代替被积函数进行求解积分。这需要首先了解拉格朗日插值法,专题博文在此:下面正式介绍插值型求积公式。————————————————————————————————————————————————————插值型求积公式的基本...原创 2018-07-04 22:40:53 · 25613 阅读 · 2 评论 -
拉格朗日插值法(Lagrange插值法)
插值介绍:在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。这是百度百科的原话,不错地解释了插值的作用。插值定义:已知函数在区间[a,b]上n+1个相异点处的函数值。如果存在一个函数,满足则称S(x)为f(x)在点处的插值函数,为插值节点,[a,b]为插值区间,求插值函数的方...原创 2018-07-04 23:11:41 · 17776 阅读 · 0 评论 -
牛顿插值法
有了拉格朗日插值法,牛顿插值怎么会缺席呢,这里介绍牛顿插值,牛顿插值自然是为了解决拉格朗日的在编程上的缺陷而出现的(至少逻辑是这样的),拉格朗日插值法在编程上的缺陷是什么呢?从拉格朗日插值的形式就可以得知,每增加一个插值节点就要重新计算插值基函数,这是一个致命的缺点。牛顿插值克服了这个问题,我们一起看看牛顿插值是怎么回事,再看看为什么牛顿插值没有这个缺点。—————————————————————...原创 2018-07-04 23:42:31 · 19530 阅读 · 0 评论 -
正交分解
正交分解的几条必要的基础:正交分解以及正交投影的定义:正交分解的性质:下面一条性质运用到了商高定理来证明:这两条性质比较好理解,其他恶心的性质就不列出来了。————————————————————————————————————————————————————希尔伯特空间中的傅里叶分析:引入:Hilbert空间中的正交系:规范正交系的概念:如何得到规范正交系,那就用到了规范正交化:规范正交系的性质...原创 2018-07-05 17:00:49 · 16498 阅读 · 0 评论 -
內积空间
在讲內积空间之前,先提一下线性空间,这是內积空间的基础,也是我们学习任何一门理科所必备的常识。线性空间介绍: 向量空间亦称向量空间。它是线性代数的中心内容和基本概念之一。设V是一个非空集合,P是一个域。若:1.在V中定义了一种运算,称为加法,即对V中任意两个元素α与β都按某一法则对应于V内惟一确定的一个元素α+β,称为α与β的和。 2.在P与V的元素间定义了一种运算,称为纯量乘法(亦...原创 2018-07-05 15:16:05 · 6400 阅读 · 0 评论 -
范数(赋范线性空间、向量范数、矩阵范数)
赋范线性空间:在线性空间中装配上范数就成了赋范线性空间,这和內积空间是不是套路一致。————————————————————————————————————————————————————向量范数定义以及常用的向量范数:————————————————————————————————————————————————————矩阵范数定义:矩阵范数与向量范数相容的概念:矩阵的算子范数:常用的矩阵范数:...原创 2018-07-05 17:26:20 · 7870 阅读 · 0 评论 -
牛顿—柯特斯(Newton-Cotes)求积公式
看此博文需要首先知道插值型求积公式,见博文:插值型求积公式看插值型求积公式,又需要看拉格朗日插值法,见博文:拉格朗日插值法......————————————————————————————————————————————————————————————————————————————————————————————————————————常见的Newton-Cotes公式:———————————...原创 2018-07-05 17:36:40 · 22748 阅读 · 7 评论 -
內积空间中的最佳逼近
定义:————————————————————————————————————————————————————正交投影定理:————————————————————————————————————————————————————最佳逼近推导:...原创 2018-07-05 17:44:49 · 3230 阅读 · 0 评论 -
函数空间中的最佳逼近
上篇博文:內积空间中的最佳逼近中的內积和范数:———————————————————————————————————————————————————— 空间中的最佳逼近:勒让德多项式:...原创 2018-07-05 17:46:33 · 4864 阅读 · 0 评论 -
数值分析专题目录
一、基础知识1.1 范数1.2 內积空间1.3 正交分解二、插值2.1 拉格朗日插值法2.2 牛顿插值法三、最佳逼近3.1 內积空间中的最佳逼近3.2 L^[a,b]空间中的最佳逼近四、数值积分4.1 数值积分初步4.2 插值型求积公式4.3 牛顿—柯特斯求积公式...原创 2018-07-05 21:29:09 · 11101 阅读 · 2 评论 -
高斯型求积公式
下面讲高斯型求积公式的由来以及一般情况,比较枯燥,但若有志于弄懂高斯型求积公式的还是可以参考一下的。但对于使用者,做题型的要求来看,可快进到第二篇,或者直接看题。知道了高斯点,再求积求积系数,岂不太容易了。————————————————————————————————————————————————————第一篇:引入:求积公式的最大代数精度为2n+1,不可能达到2n+2;高斯求积公式的代数精度...原创 2018-07-06 16:12:29 · 78249 阅读 · 5 评论 -
迭代法求解线性方程组的收敛问题总结
本讲之前,先将高斯-赛德尔迭代法和迭代法求解线性方程组贴出来,毕竟收敛问题研究的是迭代方法的收敛问题。进入主题:判断迭代法收敛的办法:1、首先根据方程组的系数矩阵A的特点判断;2、可根据迭代矩阵的范数判断;3、只好根据迭代矩阵的谱半径来判断;————————————————————————————————————————————————————下面一一解释:(1、3 很重要!)——————————...原创 2018-07-08 15:09:20 · 45596 阅读 · 5 评论