torch.flatten
函数的作用是将一个张量展平为一维张量或在特定维度开始展平为一个低维张量。
假设我们有一个形状为(batch_size, channels, height, width)
的四维张量,比如(2, 3, 4, 5)
。
当使用torch.flatten(pred.permute(0, 2, 3, 1), start_dim=1)
时:
pred.permute(0, 2, 3, 1)
:- 这一步对输入张量
pred
进行维度重排。假设原始张量的维度顺序是由数据的逻辑意义决定的,通过permute
可以改变维度的顺序以满足后续操作的需求。在这里,新的维度顺序变为(batch_size, height, width, channels)
。
- 这一步对输入张量
torch.flatten(..., start_dim=1)
:start_dim=1
表示从第二个维度(索引从 0 开始,所以第二个维度的索引为 1)开始进行展平操作。- 对于上述例子中的张量,第一个维度(batch_size)保持不变,从第二个维度开始展平。具体来说,第二个维度有 4 个元素,第三个维度有 5 个元素,第四个维度有 3 个元素。展平后,结果张量的形状变为
(batch_size, height * width * channels)
,即(2, 4 * 5 * 3)=(2, 60)
。
如果将start_dim
设置为其他值,会有不同的展平效果:
- 如果
start_dim = 0
,那么整个张量将被展平为一个一维张量,形状为(batch_size * height * width * channels)
。 - 如果
start_dim = 2
,那么从第三个维度开始展平。对于上述例子中的张量,结果形状将为(batch_size * channels, height * width)
,即(2 * 3, 4 * 5)=(6, 20)
。