torch.flatten函数中start_dim

torch.flatten函数的作用是将一个张量展平为一维张量或在特定维度开始展平为一个低维张量。

假设我们有一个形状为(batch_size, channels, height, width)的四维张量,比如(2, 3, 4, 5)

当使用torch.flatten(pred.permute(0, 2, 3, 1), start_dim=1)时:

  1. pred.permute(0, 2, 3, 1)
    • 这一步对输入张量pred进行维度重排。假设原始张量的维度顺序是由数据的逻辑意义决定的,通过permute可以改变维度的顺序以满足后续操作的需求。在这里,新的维度顺序变为(batch_size, height, width, channels)
  2. torch.flatten(..., start_dim=1)
    • start_dim=1表示从第二个维度(索引从 0 开始,所以第二个维度的索引为 1)开始进行展平操作。
    • 对于上述例子中的张量,第一个维度(batch_size)保持不变,从第二个维度开始展平。具体来说,第二个维度有 4 个元素,第三个维度有 5 个元素,第四个维度有 3 个元素。展平后,结果张量的形状变为(batch_size, height * width * channels),即(2, 4 * 5 * 3)=(2, 60)

如果将start_dim设置为其他值,会有不同的展平效果:

  • 如果start_dim = 0,那么整个张量将被展平为一个一维张量,形状为(batch_size * height * width * channels)
  • 如果start_dim = 2,那么从第三个维度开始展平。对于上述例子中的张量,结果形状将为(batch_size * channels, height * width),即(2 * 3, 4 * 5)=(6, 20)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值