李宏毅教授的《生成式AI导论2024》是2024年春季在台湾大学开设的一门系统性课程,重点围绕生成式人工智能(Generative AI)的基础理论、技术演进及实践应用展开。
一、课程概况
课程定位:面向生成式AI的入门到进阶学习者,涵盖生成式模型的基础原理、大型语言模型(LLM)的演化、微调技术(Fine-tuning)、提示工程(Prompt Engineering)等核心内容。课程总共包含18节,10次作业,还有14个扩展视频。
授课形式:课程以视频为主,配套PPT、作业及代码实践,部分资源通过课程主页及GitHub开源共享。
课程主页:https://speech.ee.ntu.edu.tw/~hylee/genai/2024-spring.php
二、课程内容与结构
课程共分为多讲,核心主题包括:
-
生成式AI基础:定义生成式AI与分类问题的区别,探讨其挑战(如从海量可能性中生成合理结果)。
-
大型语言模型(LLM)发展史:从预训练(Pre-training)到指令微调(Instruction Fine-tuning),分析ChatGPT和LLaMA等模型的演化。
-
技术细节:
生成策略:文本、图像、语音的生成方式差异(如逐字生成 vs. 一次性生成)。
模型优化:LoRA、Adapter等参数高效微调方法,思维链(Chain-of-Thought)对模型性能的提升。
- 实践应用:通过作业实现LLM微调(如让模型生成唐诗)、Prompt工程开发应用等。
三、课程亮点
教学风格:李宏毅以通俗易懂的讲解著称,常结合动漫案例(如精灵宝可梦)阐释复杂技术,降低学习门槛。
实践导向:强调从理论到代码的完整链路,例如通过微调模型实现特定任务,并分析模型参数与显存的关系。
前沿覆盖:涉及GPT-4o、Diffusion模型、伦理问题等最新议题。
四、学习路径
-
观看视频并配合PPT理解理论;
-
完成作业巩固实践;
-
参考社区笔记及开源代码深化理解。
五、资源获取
中文课程入口:
【李宏毅-生成式AI导论2024】公认最好的LLM大模型教程!大模型入门到进阶!附带课件、代码配套资源
课件和代码: