【李宏毅-生成式AI导论2024】公认最好的LLM大模型教程!

李宏毅教授的《生成式AI导论2024》是2024年春季在台湾大学开设的一门系统性课程,重点围绕生成式人工智能(Generative AI)的基础理论、技术演进及实践应用展开。
在这里插入图片描述

一、课程概况

课程定位:面向生成式AI的入门到进阶学习者,涵盖生成式模型的基础原理、大型语言模型(LLM)的演化、微调技术(Fine-tuning)、提示工程(Prompt Engineering)等核心内容。课程总共包含18节,10次作业,还有14个扩展视频。

授课形式:课程以视频为主,配套PPT、作业及代码实践,部分资源通过课程主页及GitHub开源共享。

课程主页:https://speech.ee.ntu.edu.tw/~hylee/genai/2024-spring.php

二、课程内容与结构

课程共分为多讲,核心主题包括:

  1. 生成式AI基础:定义生成式AI与分类问题的区别,探讨其挑战(如从海量可能性中生成合理结果)。

  2. 大型语言模型(LLM)发展史:从预训练(Pre-training)到指令微调(Instruction Fine-tuning),分析ChatGPT和LLaMA等模型的演化。

  3. 技术细节:

生成策略:文本、图像、语音的生成方式差异(如逐字生成 vs. 一次性生成)。

模型优化:LoRA、Adapter等参数高效微调方法,思维链(Chain-of-Thought)对模型性能的提升。

  1. 实践应用:通过作业实现LLM微调(如让模型生成唐诗)、Prompt工程开发应用等。

三、课程亮点

教学风格:李宏毅以通俗易懂的讲解著称,常结合动漫案例(如精灵宝可梦)阐释复杂技术,降低学习门槛。

实践导向:强调从理论到代码的完整链路,例如通过微调模型实现特定任务,并分析模型参数与显存的关系。

前沿覆盖:涉及GPT-4o、Diffusion模型、伦理问题等最新议题。

四、学习路径

  1. 观看视频并配合PPT理解理论;

  2. 完成作业巩固实践;

  3. 参考社区笔记及开源代码深化理解。

五、资源获取

中文课程入口:

【李宏毅-生成式AI导论2024】公认最好的LLM大模型教程!大模型入门到进阶!附带课件、代码配套资源

课件和代码:

【李宏毅-生成式AI导论2024】源码、课件获取!

### 李宏毅生成式AI导论课程资料概述 #### 课程简介 李宏毅教授的《生成式AI导论》是一门深入浅出介绍生成式人工智能理论和技术的课程。该课程不仅涵盖了生成式AI的基础概念和发展历程,还探讨了当前最前沿的研究成果及其实际应用场景[^1]。 #### 主要内容概览 - **第0讲:课程说明** - 对整个系列讲座的内容框架进行了详细介绍。 - **第1讲:生成式AI是什么?** - 解释了生成式AI的核心定义以及其与其他类型的人工智能的区别所在。 - **第二讲:今日的生成式人工智慧厲害在哪裡?從「工具」變為「工具人」** - 探讨现代生成式AI的强大之处,并分析这些进步如何使机器不仅仅作为辅助工具存在,而是能够承担更多自主任务的角色转变过程。 - **第三讲:训练不了人工智能?你可以训练你自己(上)** - 讨论个人技能提升的重要性,特别是在面对复杂多变的技术环境时自我调整和适应的方法论建议。 #### 结构化学习与生成式学习的关系 在过去,“结构化学习”指的是让计算机学会处理具有特定格式的数据;而如今所说的“生成式学习”,则是指通过大量无标注数据来构建可以创造新样本或模拟真实世界现象的概率分布模型。尽管两者名称不同,但在某些方面确实存在着一定的联系——它们都涉及到模式识别、特征提取等关键技术环节。然而值得注意的是,在具体实现方式和技术细节层面二者之间差异巨大,尤其是在近十年间随着深度学习算法的发展,后者取得了前所未有的突破性进展[^2]。 #### 获取资源途径 为了方便国内学生获取最新版本的教学材料,《李宏毅2024生成式人工智能导论》提供了中文镜像版指导文档及配套练习题库,所有相关内容均已托管至GitHub平台供免费下载使用。这一举措得到了原作者正式授权许可,体现了教育工作者对于知识传播开放共享精神的支持态度[^3]。 ```bash git clone https://github.com/user/repo.git cd repo ``` 上述命令可以帮助用户轻松克隆仓库并浏览其中包含的各种教学素材。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

红色石头Will

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值