台湾大学林轩田机器学习基石课程学习笔记5 -- Training versus Testing

红色石头的个人网站:redstonewill.com

上节课,我们主要介绍了机器学习的可行性。首先,由NFL定理可知,机器学习貌似是不可行的。但是,随后引入了统计学知识,如果样本数据足够大,且hypothesis个数有限,那么机器学习一般就是可行的。本节课将讨论机器学习的核心问题,严格证明为什么机器可以学习。从上节课最后的问题出发,即当hypothesis的个数是无限多的时候,机器学习的可行性是否仍然成立?

一、Recap and Preview

我们先来看一下基于统计学的机器学习流程图:

这里写图片描述

该流程图中,训练样本D和最终测试h的样本都是来自同一个数据分布,这是机器能够学习的前提。另外,训练样本D应该足够大,且hypothesis set的个数是有限的,这样根据霍夫丁不等式,才不会出现Bad Data,保证 EinEout E i n ≈ E o u t ,即有很好的泛化能力。同时,通过训练,得到使 Ein E i n 最小的h,作为模型最终的矩g,g接近于目标函数。

这里,我们总结一下前四节课的主要内容:第一节课,我们介绍了机器学习的定义,目标是找出最好的矩g,使 gf g ≈ f ,保证 Eout(g)0 E o u t ( g ) ≈ 0 ;第二节课,我们介绍了如何让 Ein0 E i n ≈ 0 ,可以使用PLA、pocket等演算法来实现;第三节课,我们介绍了机器学习的分类,我们的训练样本是批量数据(batch),处理监督式(supervised)二元分类(binary classification)问题;第四节课,我们介绍了机器学习的可行性,通过统计学知识,把 Ein(g) E i n ( g ) Eout(g) E o u t ( g ) 联系起来,证明了在一些条件假设下, Ein(g)Eout(g) E i n ( g ) ≈ E o u t ( g ) 成立。

这里写图片描述

这四节课总结下来,我们把机器学习的主要目标分成两个核心的问题:

  • Ein(g)Eout(g) E i n ( g ) ≈ E o u t ( g )

  • Ein(g) E i n ( g ) 足够小

上节课介绍的机器学习可行的一个条件是hypothesis set的个数M是有限的,那M跟上面这两个核心问题有什么联系呢?

我们先来看一下,当M很小的时候,由上节课介绍的霍夫丁不等式,得到 Ein(g)Eout(g) E i n ( g ) ≈ E o u t ( g ) ,即能保证第一个核心问题成立。但M很小时,演算法A可以选择的hypothesis有限,不一定能找到使 Ein(g) E i n ( g ) 足够小的hypothesis,即不能保证第二个核心问题成立。当M很大的时候,同样由霍夫丁不等式, Ein(g) E i n ( g ) Eout(g) E o u t ( g ) 的差距可能比较大,第一个核心问题可能不成立。而M很大,使的演算法A的可以选择的hypothesis就很多,很有可能找到一个hypothesis,使 Ein(g) E i n ( g ) 足够小,第二个核心问题可能成立。

这里写图片描述

从上面的分析来看,M的选择直接影响机器学习两个核心问题是否满足,M不能太大也不能太小。那么如果M无限大的时候,是否机器就不可以学习了呢?例如PLA算法中直线是无数条的,但是PLA能够很好地进行机器学习,这又是为什么呢?如果我们能将无限大的M限定在一个有限的 mH m H 内,问题似乎就解决了。

二、Effective Number of Line

我们先看一下上节课推导的霍夫丁不等式:

P[|Ein(g)Eout(g)|>ϵ]2Mexp(2ϵ2N) P [ | E i n ( g ) − E o u t ( g ) | > ϵ ] ≤ 2 ⋅ M ⋅ e x p ( − 2 ϵ 2 N )

其中,M表示hypothesis的个数。每个hypothesis下的BAD events Bm B m 级联的形式满足下列不等式:

P[B1 or B2 or BM]P[B1]+P[B2]++P[BM] P [ B 1   o r   B 2   o r   ⋯ B M ] ≤ P [ B 1 ] + P [ B 2 ] + ⋯ + P [ B M ]

M= M = ∞ 时,上面不等式右边值将会很大,似乎说明BAD events很大, Ein(g) E i n ( g ) Eout(g) E o u t ( g ) 也并不接近。但是BAD events Bm B m 级联的形式实际上是扩大了上界,union bound过大。这种做法假设各个hypothesis之间没有交集,这是最坏的情况,可是实际上往往不是如此,很多情况下,都是有交集的,也就是说M实际上没那么大,如下图所示:

这里写图片描述

也就是说union bound被估计过高了(over-estimating)。所以,我们的目的是找出不同BAD events之间的重叠部分,也就是将无数个hypothesis分成有限个类别。

如何将无数个hypothesis分成有限类呢?我们先来看这样一个例子,假如平面上用直线将点分开,也就跟PLA一样。如果平面上只有一个点x1,那么直线的种类有两种:一种将x1划为+1,一种将x1划为-1:

这里写图片描述

如果平面上有两个点x1、x2,那么直线的种类共4种:x1、x2都为+1,x1、x2都为-1,x1为+1且x2为-1,x1为-1且x2为+1:

这里写图片描述

如果平面上有三个点x1、x2、x3,那么直线的种类共8种:

这里写图片描述

但是,在三个点的情况下,也会出现不能用一条直线划分的情况:

这里写图片描述

也就是说,对于平面上三个点,不能保证所有的8个类别都能被一条直线划分。那如果是四个点x1、x2、x3、x4,我们发现,平面上找不到一条直线能将四个点组成的16个类别完全分开,最多只能分开其中的14类,即直线最多只有14种:

这里写图片描述

经过分析,我们得到平面上线的种类是有限的,1个点最多有2种线,2个点最多有4种线,3个点最多有8种线,4个点最多有14( <24 < 2 4 <script type="math/tex" id="MathJax-Element-24"><2^4</script>)种线等等。我们发现,有效直线的数量总是满足 2N ≤ 2 N ,其中,N是点的个数。所以,如果我们可以用effective(N)代替M,霍夫丁不等式可以写成:

P[|Ein(g)Eout(g)|>ϵ]2effective(N)exp(2ϵ2N) P [ | E i n ( g ) − E o u t ( g ) | > ϵ ] ≤ 2 ⋅ e f f e c t i v e ( N ) ⋅ e x p ( − 2 ϵ 2 N )

已知effective(N)< 2N 2 N ,如果能够保证effective(N)<< 2N 2 N ,即不等式右边接近于零,那么即使M无限大,直线的种类也很有限,机器学习也是可能的。

这里写图片描述

三、Effective Number of Hypotheses

接下来先介绍一个新名词:二分类(dichotomy)。dichotomy就是将空间中的点(例如二维平面)用一条直线分成正类(蓝色o)和负类(红色x)。令H是将平面上的点用直线分开的所有hypothesis h的集合,dichotomy H与hypotheses H的关系是:hypotheses H是平面上所有直线的集合,个数可能是无限个,而dichotomy H是平面上能将点完全用直线分开的直线种类,它的上界是 2N 2 N 。接下来,我们要做的就是尝试用dichotomy代替M。

这里写图片描述

再介绍一个新的名词:成长函数(growth function),记为 mH(H) m H ( H ) 。成长函数的定义是:对于由N个点组成的不同集合中,某集合对应的dichotomy最大,那么这个dichotomy值就是 mH(H) m H ( H ) ,它的上界是 2N 2 N

这里写图片描述

成长函数其实就是我们之前讲的effective lines的数量最大值。根据成长函数的定义,二维平面上, mH(H) m H ( H ) 随N的变化关系是:

这里写图片描述

接下来,我们讨论如何计算成长函数。先看一个简单情况,一维的Positive Rays:

这里写图片描述

若有N个点,则整个区域可分为N+1段,很容易得到其成长函数 mH(N)=N+1 m H ( N ) = N + 1 。注意当N很大时, (N+1)<<2N ( N + 1 ) << 2 N ,这是我们希望看到的。

另一种情况是一维的Positive Intervals:

这里写图片描述

它的成长函数可以由下面推导得出:

这里写图片描述

这种情况下, mH(N)=12N2+12N+1<<2N m H ( N ) = 1 2 N 2 + 1 2 N + 1 << 2 N ,在N很大的时候,仍然是满足的。

再来看这个例子,假设在二维空间里,如果hypothesis是凸多边形或类圆构成的封闭曲线,如下图所示,左边是convex的,右边不是convex的。那么,它的成长函数是多少呢?

这里写图片描述

当数据集D按照如下的凸分布时,我们很容易计算得到它的成长函数 mH=2N m H = 2 N 。这种情况下,N个点所有可能的分类情况都能够被hypotheses set覆盖,我们把这种情形称为shattered。也就是说,如果能够找到一个数据分布集,hypotheses set对N个输入所有的分类情况都做得到,那么它的成长函数就是 2N 2 N

这里写图片描述

四、Break Point

上一小节,我们介绍了四种不同的成长函数,分别是:

这里写图片描述

其中,positive rays和positive intervals的成长函数都是polynomial的,如果用 mH m H 代替M的话,这两种情况是比较好的。而convex sets的成长函数是exponential的,即等于M,并不能保证机器学习的可行性。那么,对于2D perceptrons,它的成长函数究竟是polynomial的还是exponential的呢?

对于2D perceptrons,我们之前分析了3个点,可以做出8种所有的dichotomy,而4个点,就无法做出所有16个点的dichotomy了。所以,我们就把4称为2D perceptrons的break point(5、6、7等都是break point)。令有k个点,如果k大于等于break point时,它的成长函数一定小于2的k次方。

根据break point的定义,我们知道满足 mH(k)2k m H ( k ) ≠ 2 k 的k的最小值就是break point。对于我们之前介绍的四种成长函数,他们的break point分别是:

这里写图片描述

通过观察,我们猜测成长函数可能与break point存在某种关系:对于convex sets,没有break point,它的成长函数是2的N次方;对于positive rays,break point k=2,它的成长函数是O(N);对于positive intervals,break point k=3,它的成长函数是 O(N2) O ( N 2 ) 。则根据这种推论,我们猜测2D perceptrons,它的成长函数 mH(N)=O(Nk1) m H ( N ) = O ( N k − 1 ) 。如果成立,那么就可以用 mH m H 代替M,就满足了机器能够学习的条件。关于上述猜测的证明,我们下节课再详细介绍。

五、总结

本节课,我们更深入地探讨了机器学习的可行性。我们把机器学习拆分为两个核心问题: Ein(g)Eout(g) E i n ( g ) ≈ E o u t ( g ) Ein(g)0 E i n ( g ) ≈ 0 。对于第一个问题,我们探讨了M个hypothesis到底可以划分为多少种,也就是成长函数 mH m H 。并引入了break point的概念,给出了break point的计算方法。下节课,我们将详细论证对于2D perceptrons,它的成长函数与break point是否存在多项式的关系,如果是这样,那么机器学习就是可行的。

注明:

文章中所有的图片均来自台湾大学林轩田《机器学习基石》课程。

关注公众号并输入关键字“jspdf”获得该笔记的pdf文件哦~

更多AI资源请关注公众号:红色石头的机器学习之路(ID:redstonewill)
这里写图片描述

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

红色石头Will

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值