三分钟带你对 Softmax 划重点

个人网站:红色石头的机器学习之路
CSDN博客:红色石头的专栏
知乎:红色石头
微博:RedstoneWill的微博
GitHub:RedstoneWill的GitHub
微信公众号:AI有道(ID:redstonewill)

1. 什么是Softmax

Softmax 在机器学习和深度学习中有着非常广泛的应用。尤其在处理多分类(C > 2)问题,分类器最后的输出单元需要Softmax 函数进行数值处理。关于Softmax 函数的定义如下所示:

Si=eViCieVi S i = e V i ∑ i C e V i

其中,Vi 是分类器前级输出单元的输出。i 表示类别索引,总的类别个数为 C。Si 表示的是当前元素的指数与所有元素指数和的比值。Softmax 将多分类的输出数值转化为相对概率,更容易理解和比较。我们来看下面这个例子。

一个多分类问题,C = 4。线性分类器模型最后输出层包含了四个输出值,分别是:

V=3210 V = [ − 3 2 − 1 0 ]

经过Softmax处理后,数值转化为相对概率:

S=0.00570.83900.04180.1135 S = [ 0.0057 0.8390 0.0418 0.1135 ]

很明显,Softmax 的输出表征了不同类别之间的相对概率。我们可以清晰地看出,S1 = 0.8390,对应的概率最大,则更清晰地可以判断预测为第1类的可能性更大。Softmax 将连续数值转化成相对概率,更有利于我们理解。

实际应用中,使用 Softmax 需要注意数值溢出的问题。因为有指数运算,如果 V 数值很大,经过指数运算后的数值往往可能有溢出的可能。所以,需要对 V 进行一些数值处理:即 V 中的每个元素减去 V 中的最大值。

D=max(V) D = m a x ( V )

Si=eViDCieViD S i = e V i − D ∑ i C e V i − D

相应的python示例代码如下:

scores = np.array([123, 456, 789])    # example with 3 classes and each having large scores
scores -= np.max(scores)    # scores becomes [-666, -333, 0]
p = np.exp(scores) / np.sum(np.exp(scores))

2. Softmax 损失函数

我们知道,线性分类器的输出是输入 x 与权重系数的矩阵相乘:s = Wx。对于多分类问题,使用 Softmax 对线性输出进行处理。这一小节我们来探讨下 Softmax 的损失函数。

Si=eSyiCj=1eSj S i = e S y i ∑ j = 1 C e S j

其中,Syi是正确类别对应的线性得分函数,Si 是正确类别对应的 Softmax输出。

由于 log 运算符不会影响函数的单调性,我们对 Si 进行 log 操作:

Si=logeSyiCj=1eSj S i = l o g e S y i ∑ j = 1 C e S j

我们希望 Si 越大越好,即正确类别对应的相对概率越大越好,那么就可以对 Si 前面加个负号,来表示损失函数:

Li=Si=logeSyiCj=1eSj L i = − S i = − l o g e S y i ∑ j = 1 C e S j

对上式进一步处理,把指数约去:

Li=logeSyiCj=1eSj=(syilogj=1Cesj)=syi+logj=1Cesj L i = − l o g e S y i ∑ j = 1 C e S j = − ( s y i − l o g ∑ j = 1 C e s j ) = − s y i + l o g ∑ j = 1 C e s j

这样,Softmax 的损失函数就转换成了简单的形式。

举个简单的例子,上一小节中得到的线性输出为:

V=3210 V = [ − 3 2 − 1 0 ]

假设 i = 1 为真实样本,计算其损失函数为:

Li=2+log(e3+e2+e1+e0)=0.1755 L i = − 2 + l o g ( e − 3 + e 2 + e − 1 + e 0 ) = 0.1755

Li=3+log(e3+e2+e1+e0)=5.1755 L i = 3 + l o g ( e − 3 + e 2 + e − 1 + e 0 ) = 5.1755

3. Softmax 反向梯度

推导了 Softmax 的损失函数之后,接下来继续对权重参数进行反向求导。

Softmax 线性分类器中,线性输出为:

Si=Wxi S i = W x i

其中,下标 i 表示第 i 个样本。

求导过程的程序设计分为两种方法:一种是使用嵌套 for 循环,另一种是直接使用矩阵运算。

使用嵌套 for 循环,对权重 W 求导函数定义如下:

def softmax_loss_naive(W, X, y, reg):
 """
 Softmax loss function, naive implementation (with loops)

 Inputs have dimension D, there are C classes, and we operate on minibatches
 of N examples.

 Inputs:
 - W: A numpy array of shape (D, C) containing weights.
 - X: A numpy array of shape (N, D) containing a minibatch of data.
 - y: A numpy array of shape (N,) containing training labels; y[i] = c means
   that X[i] has label c, where 0 <= c < C.
 - reg: (float) regularization strength

 Returns a tuple of:
 - loss as single float
 - gradient with respect to weights W; an array of same shape as W
 """
 # Initialize the loss and gradient to zero.
 loss = 0.0
 dW = np.zeros_like(W)

 num_train = X.shape[0]
 num_classes = W.shape[1]
 for i in xrange(num_train):
   scores = X[i,:].dot(W)
   scores_shift = scores - np.max(scores)
   right_class = y[i]
   loss += -scores_shift[right_class] + np.log(np.sum(np.exp(scores_shift)))
   for j in xrange(num_classes):
     softmax_output = np.exp(scores_shift[j]) / np.sum(np.exp(scores_shift))
     if j == y[i]:
       dW[:,j] += (-1 + softmax_output) * X[i,:]
     else:
       dW[:,j] += softmax_output * X[i,:]

 loss /= num_train
 loss += 0.5 * reg * np.sum(W * W)
 dW /= num_train
 dW += reg * W

 return loss, dW

使用矩阵运算,对权重 W 求导函数定义如下:

def softmax_loss_vectorized(W, X, y, reg):
 """
 Softmax loss function, vectorized version.

 Inputs and outputs are the same as softmax_loss_naive.
 """
 # Initialize the loss and gradient to zero.
 loss = 0.0
 dW = np.zeros_like(W)

 num_train = X.shape[0]
 num_classes = W.shape[1]
 scores = X.dot(W)
 scores_shift = scores - np.max(scores, axis = 1).reshape(-1,1)
 softmax_output = np.exp(scores_shift) / np.sum(np.exp(scores_shift), axis=1).reshape(-1,1)
 loss = -np.sum(np.log(softmax_output[range(num_train), list(y)]))
 loss /= num_train
 loss += 0.5 * reg * np.sum(W * W)

 dS = softmax_output.copy()
 dS[range(num_train), list(y)] += -1
 dW = (X.T).dot(dS)
 dW = dW / num_train + reg * W  

 return loss, dW

实际验证表明,矩阵运算速度要比嵌套循环快很多,特别是在训练样本数量多的情况下。我们使用 CIFAR-10 数据集中约5000个样本对两种求导方式进行测试对比:

tic = time.time()
loss_naive, grad_naive = softmax_loss_naive(W, X_train, y_train, 0.000005)
toc = time.time()
print('naive loss: %e computed in %fs' % (loss_naive, toc - tic))

tic = time.time()
loss_vectorized, grad_vectorized = softmax_loss_vectorized(W, X_train, y_train, 0.000005)
toc = time.time()
print('vectorized loss: %e computed in %fs' % (loss_vectorized, toc - tic))

grad_difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro')
print('Loss difference: %f' % np.abs(loss_naive - loss_vectorized))
print('Gradient difference: %f' % grad_difference)

结果显示为:

naive loss: 2.362135e+00 computed in 14.680000s

vectorized loss: 2.362135e+00 computed in 0.242000s

Loss difference: 0.000000

Gradient difference: 0.000000

显然,此例中矩阵运算的速度要比嵌套循环快60倍。所以,当我们在编写机器学习算法模型时,尽量使用矩阵运算,少用 嵌套循环,以提高运算速度。

4. Softmax 与 SVM

Softmax线性分类器的损失函数计算相对概率,又称交叉熵损失「Cross Entropy Loss」。线性 SVM 分类器和 Softmax 线性分类器的主要区别在于损失函数不同。SVM 使用 hinge loss,更关注分类正确样本和错误样本之间的距离「Δ = 1」,只要距离大于 Δ,就不在乎到底距离相差多少,忽略细节。而 Softmax 中每个类别的得分函数都会影响其损失函数的大小。举个例子来说明,类别个数 C = 3,两个样本的得分函数分别为[10, -10, -10],[10, 9, 9],真实标签为第0类。对于 SVM 来说,这两个 Li 都为0;但对于Softmax来说,这两个 Li 分别为0.00和0.55,差别很大。

关于 SVM 线性分类器,我在上篇文章里有所介绍,传送门:

基于线性SVM的CIFAR-10图像集分类

接下来,谈一下正则化参数 λ 对 Softmax 的影响。我们知道正则化的目的是限制权重参数 W 的大小,防止过拟合。正则化参数 λ 越大,对 W 的限制越大。例如,某3分类的线性输出为 [1, -2, 0],相应的 Softmax 输出为[0.7, 0.04, 0.26]。假设,正类类别是第0类,显然,0.7远大于0.04和0.26。

若使用正则化参数 λ,由于限制了 W 的大小,得到的线性输出也会等比例缩小:[0.5, -1, 0],相应的 Softmax 输出为[0.55, 0.12, 0.33]。显然,正确样本和错误样本之间的相对概率差距变小了。

也就是说,正则化参数 λ 越大,Softmax 各类别输出越接近。大的 λ 实际上是「均匀化」正确样本与错误样本之间的相对概率。但是,概率大小的相对顺序并没有改变,这点需要留意。因此,也不会影响到对 Loss 的优化算法。

5. Softmax 实际应用

使用 Softmax 线性分类器,对 CIFAR-10 图片集进行分类。


这里写图片描述

使用交叉验证,选择最佳的学习因子和正则化参数:

# Use the validation set to tune hyperparameters (regularization strength and
# learning rate). You should experiment with different ranges for the learning
# rates and regularization strengths; if you are careful you should be able to
# get a classification accuracy of over 0.35 on the validation set.
results = {}
best_val = -1
best_softmax = None
learning_rates = [1.4e-7, 1.5e-7, 1.6e-7]
regularization_strengths = [8000.0, 9000.0, 10000.0, 11000.0, 18000.0, 19000.0, 20000.0, 21000.0]

for lr in learning_rates:
   for reg in regularization_strengths:
       softmax = Softmax()
       loss = softmax.train(X_train, y_train, learning_rate=lr, reg=reg, num_iters=3000)
       y_train_pred = softmax.predict(X_train)
       training_accuracy = np.mean(y_train == y_train_pred)
       y_val_pred = softmax.predict(X_val)
       val_accuracy = np.mean(y_val == y_val_pred)
       if val_accuracy > best_val:
           best_val = val_accuracy
           best_softmax = softmax
       results[(lr, reg)] = training_accuracy, val_accuracy

# Print out results.
for lr, reg in sorted(results):
   train_accuracy, val_accuracy = results[(lr, reg)]
   print('lr %e reg %e train accuracy: %f val accuracy: %f' % (
               lr, reg, train_accuracy, val_accuracy))

print('best validation accuracy achieved during cross-validation: %f' % best_val)

训练结束后,在测试图片集上进行验证:

# evaluate on test set
# Evaluate the best softmax on test set
y_test_pred = best_softmax.predict(X_test)
test_accuracy = np.mean(y_test == y_test_pred)
print('softmax on raw pixels final test set accuracy: %f' % (test_accuracy, ))

softmax on raw pixels final test set accuracy: 0.386000

权重参数 W 可视化代码如下:

# Visualize the learned weights for each class
w = best_softmax.W[:-1,:] # strip out the bias
w = w.reshape(32, 32, 3, 10)

w_min, w_max = np.min(w), np.max(w)

classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
for i in range(10):
   plt.subplot(2, 5, i + 1)

   # Rescale the weights to be between 0 and 255
   wimg = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min)
   plt.imshow(wimg.astype('uint8'))
   plt.axis('off')
   plt.title(classes[i])


这里写图片描述

很明显,经过训练学习,W 包含了相应类别的某些简单色调和轮廓特征。

本文完整代码,点击「源码」获取。

源码


这里写图片描述


参考文献:

http://cs231n.github.io/linear-classify/

### 温度系数对Softmax函数的影响及其对模型预测准确率的作用 #### 1. Softmax 函数的基础形式 Softmax 是一种常用的激活函数,用于将一组未归一化的分数转换成概率分布。其基本表达式为: ```python def softmax(x, t=1): exp_x = np.exp(np.array(x) / t) return exp_x / exp_x.sum() ``` 其中 `t` 表示温度系数(Temperature Parameter)。当 `t=1` 时,Softmax 返回标准的概率分布[^1]。 --- #### 2. 温度系数对 Softmax 输出分布的影响 温度系数 \( t \) 控制了 Softmax 输出分布的平滑程度: - 当 \( t > 1 \),输出分布变得更加平滑,即各个类别的概率差距缩小。这种效果类似于“软化”了原始得分之间的差异,从而减少了极端值的影响。 - 当 \( t < 1 \),输出分布变得更尖锐,即高分项的概率进一步放大,低分项的概率被压缩到更低水平。此时,Softmax 更加接近 Argmax 的行为,表现出更强的选择倾向[^2]。 数学上可以通过以下例子直观理解: 假设输入向量为 `[1, 2, 3]`, - 若 \( t = 1 \),则 Softmax 输出约为 `[0.09, 0.24, 0.67]`。 - 若 \( t = 2 \),则 Softmax 输出变为 `[0.18, 0.31, 0.51]`,分布更加均匀。 - 若 \( t = 0.5 \),则 Softmax 输出趋近於 `[0.02, 0.12, 0.86]`,突出最高分项。 由此可见,\( t \) 调节了 Softmax 对输入分数敏感性的程度。 --- #### 3. 温度系数对模型性能的影响 温度系数不仅改变了 Softmax 的输出分布形态,还间接影响了模型的整体性能,主要体现在以下几个方面: ##### (1)训练阶段:避免局部最优解 在训练过程中,较高的温度系数可以使模型的预测分布更为平滑,从而增加探索性,防止因过早收敛而导致陷入局部最优解。例如,初始阶段设置较大 \( t \) 值可以让损失函数更容易逃离平坦区域,促进全局优化进程[^2]。 ##### (2)推理阶段:提高置信度或多样性 在推理阶段,较低的温度系数能够强化模型对高概率类别的偏好,提升预测结果的置信度。相反,较高 \( t \) 则鼓励生成多样化的候选选项,适用于需要探索多种可能性的应用场景(如自然语言生成、推荐系统等)。 ##### (3)模型泛化能力 尽管 \( t \) 并不直接影响模型的理论正确率上限,但它通过塑造目标分布的形式参与了整个学习过程。合理的温度调节策略可以在一定程度上改善模型的泛化能力。例如,“先热后冷”的动态调整方法借鉴自模拟退火算法的思想,能够在早期放宽约束以充分挖掘潜在特征,随后逐步收紧以实现精确匹配[^2]。 --- #### 4. 实践中的注意事项 虽然温度系数提供了灵活调控手段,但也需谨慎设计其变化规律: - **静态 vs 动态**:可以根据任务需求选择固定的 \( t \) 或者随时间/轮次动态更新。 - **过度平滑风险**:若 \( t \) 设置过大,可能导致类别区分模糊,进而恶化分类精度。 - **联合调参**:与其他超参数(如学习率、正则化强度)协同优化,确保整体框架稳定高效运行。 --- ### 示例代码展示 以下是 Python 中实现温度调节的 Softmax 计算逻辑: ```python import numpy as np def softmax_with_temperature(logits, temperature=1.0): """ 参数: logits (list or array): 输入的未归一化分数. temperature (float): 温度系数,默认为1. 返回: list: 归一化后的概率分布. """ exponentials = np.exp((np.array(logits) - max(logits)) / temperature) # 防止溢出 probabilities = exponentials / np.sum(exponentials) return probabilities.tolist() # 测试案例 logits = [1, 2, 3] print("T=1:", softmax_with_temperature(logits, temperature=1)) print("T=2:", softmax_with_temperature(logits, temperature=2)) print("T=0.5:", softmax_with_temperature(logits, temperature=0.5)) ``` 执行该脚本可观察不同温度条件下 Softmax 输出的变化趋势。 ---
评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

红色石头Will

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值