聚类
文章平均质量分 88
烤鱼想睡觉
愿漂泊的人都有酒喝,愿孤独的人都有歌唱。
展开
-
读书笔记 -- 006_数据挖掘_聚类_概念知识
概论 聚类是把数据对象集划分成多个组或簇的过程,使得簇内的对象具有很高的相似性,但是与其他簇中的对象很不相似。相异性和相似性根据描述对象的属性值评估,并且通常涉及距离度量。聚类作为一种数据挖掘工具已经根植于许多应用领域,如生物学、安全、商务智能和Web搜索。 聚类分析(cluster analysis)简称聚类(clustering),是一个把数据对象(或观测)划分成子集的过程。原创 2015-12-10 22:25:13 · 1950 阅读 · 0 评论 -
读书笔记 -- 007_数据挖掘_聚类_基于划分的方法
- - 概述 - - 聚类分析最简单、最基本的版本是划分,它把对象组织成多个互斥的组或簇。为了使得问题说明简洁,我们假定簇的个数作为背景知识给定。这个参数是划分方法的起点。 形式地,给定 n 个数据对象的数据集 D,以及要生成的簇个数 k,划分方法把数据对象组织成 k ( k <= n )个分区,其中每个分区代表一个簇。这些簇的形成旨在优化一个客观划分准则,如基于距离的相异性函数原创 2015-12-12 09:52:04 · 3463 阅读 · 0 评论 -
读书笔记 -- 008_数据挖掘_聚类_基于层次的方法
概述 尽管基于划分的聚类算法满足把对象划分成一些互斥的组群的基本聚类要求,但是在某些情况下,我们希望把数据划分成不同层次的组群,如层次。层次聚类方法(hierarchical clustering method)将数据对象组成层次结构或簇的“树”。 对于数据汇总和可视化,用层次结构的形式表示数据对象是有用的。我们可以很容易地对组织在层次结构中的数据进行汇总或特征化。 这原创 2015-12-14 21:25:18 · 1776 阅读 · 0 评论