第四章 奠基20 团队述职

最近三周的周会,都只讲了一件事:述职

上周大家完成了绩效自评,公司级的总结完成了,团队内部我另外安排了述职活动。

述职对组织和个人成长非常关键:

  1. 闭环思维,半年/年度述职是对之前工作的总结,可以以终为始地指导大家未来的工作

  2. 复盘反思,只有反思才能进步,反思对个人成长非常关键,述职一个集中的反思机会

  3. 目标设定,对个人的成长目标进行设定,只有目标清晰且高远,才能取得出色的成果

  4. 他山之石,自己往往有盲区,身边的合作伙伴从第三方视角反馈问题,有助于个人更准确自我定位

  5. 相互学习,通过这个机会,彼此全面了解下,学习和借鉴别人做得好的地方,帮助自我成长

因为是我回公司后组织的第一次述职,对团队成员来讲也是全新的事情,周会中再次听取大家的意见。

我不厌其烦地第二次介绍了述职的流程,分成如下几个环节:

  1. 整体规划:团队除了产假同学,其他10人包括我聚集在一个会议室,9位同学轮流述职

  2. 材料准备:每位同学在自己的述职开始前,把按照模板整理的材料(Word文件)放到公共空间

  3. 材料阅读:在每个同学的环节,其他同学读该同学的材料并在线批注,述职同学同步答疑

  4. 集中答复:读完材料后,述职同学就重点问题,给大家做口头反馈

  5. 互动反馈:每一位同学,轮流给述职同学以反馈,包括积极性、建设性的,建设性不少于1条

  6. 总结环节:述职同学简要总结,结束本人述职,开始下一个。

大家也问了不少问题:

  1. 亮亮:述职材料写起来还好,但可能不知道怎么给大家建设性反馈

  2. 超级丹:Leader要求材料要体现量化指标,但做项目时候没有量化,怎么办?这样对于自我做得好或不好也不太容易评价了

  3. 小轩:好或不好不知道写些啥

  4. 小会会:写得太细了是不是不好?

能看得出来,大家第一次做个人述职,还是比较迷茫的。我做了答疑:

  1. 我们第一次搞这个活动,大家都在学习,先做起来,再做得好,大家不用过于担心,当然还是要充分准备

  2. 之前没有量化指标,现在当然没有时间再回去调研总结了,那么本次述职之后,以终为始,为了下一次能做好述职,会推动大家在工作中更高的标准工作,也就是前面提到的闭环思维

  3. 提出问题,本身就是一个综合性比较强的能力,因为除了有经验,还要有更高一个层次的判断力才能做好提问,大家慢慢练习

  4. 对于业务成果,总结不要太细,但是对于好或不好的、自己的成长目标、对别人的反馈,一定要细致,落到实处

  5. 好或不好的总结,有点类似于提问,也是一个拔高的能力,我给了大家3个维度参考:1)项目的各个阶段,比如调研、方案、开发、测试、上线各个环节做了哪些事情 2)项目管理的十大领域,比如计划、质量、关系人管理等表现如何 3)高效能人士的七个习惯,比如要事第一、以终为始、合作共赢是否做得到位,对照这些优秀的标尺,更容易自我评估。

对这个活动,我充满期待,期望大家既忐忑又兴奋,在成长的路上狂奔。

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
数据集介绍:多环境动物及人类活动目标检测数据集 一、基础信息 数据集名称:多环境动物及人类活动目标检测数据集 图片数量: - 训练集:12,599张图片 - 验证集:1,214张图片 - 测试集:607张图片 总计:14,420张图片 分类类别: - bear(熊): 森林生态系统的顶级掠食者 - bird(鸟类): 涵盖多种飞行及陆栖鸟类 - cougar(美洲狮): 山地生态关键物种 - person(人类): 自然环境与人类活动交互场景 - truck(卡车): 工业及运输场景的车辆目标 - ungulate(有蹄类动物): 包括鹿、羊等草食性哺乳动物 - wolf(狼): 群体性捕食动物代表 标注格式: YOLO格式标注,包含归一化坐标的边界框及类别标签,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面监控等多视角数据,包含昼夜不同光照条件及复杂背景场景。 二、适用场景 野生动物保护监测: 支持构建自动识别森林/草原生态系统中濒危物种的监测系统,用于种群数量统计和栖息地研究。 农业与畜牧业管理: 检测农场周边的捕食动物(如狼、美洲狮),及时预警牲畜安全风险。 智能交通系统: 识别道路周边野生动物与运输车辆,为自动驾驶系统提供碰撞预警数据支持。 生态研究数据库: 提供7类典型生物与人类活动目标的标注数据,支撑生物多样性分析与人类活动影响研究。 安防监控增强: 适用于自然保护区监控系统,同时检测可疑人员(person)与车辆(truck)的非法闯入。 三、数据集优势 多场景覆盖: 包含森林、公路、山地等多类型场景,覆盖从独居动物(cougar)到群体生物(wolf)的检测需求。 类别平衡设计: 7个类别经专业数据采样,避免长尾分布问题,包含: - 3类哺乳动物捕食者(bear/cougar/wolf) - 2类环境指示物种(bird/ung
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值