OpenCV Java 行人检测

package com.opencv;

import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfDouble;
import org.opencv.core.MatOfFloat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.features2d.FastFeatureDetector;
import org.opencv.features2d.Feature2D;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.objdetect.HOGDescriptor;

public class OpenCvMain {
	
	//静态代码块加载动态链接库
	static {
		System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
	}

	public static void main(String[] args) {
		/*
		 * IMREAD_UNCHANGED = -1 :不进行转化,比如保存为了16位的图片,读取出来仍然为16位。
		 * IMREAD_GRAYSCALE = 0 :进行转化为灰度图,比如保存为了16位的图片,读取出来为8位,类型为CV_8UC1。
		 * IMREAD_COLOR = 1 :进行转化为三通道图像。
		 * IMREAD_ANYDEPTH = 2 :如果图像深度为16位则读出为16位,32位则读出为32位,其余的转化为8位。
		 * IMREAD_ANYCOLOR = 4 :图像以任何可能的颜色格式读取
		 * IMREAD_LOAD_GDAL = 8 :使用GDAL驱动读取文件,GDAL(Geospatial Data Abstraction
		 * Library)是一个在X/MIT许可协议下的开源栅格空间数据转换库。它利用抽象数据模型来表达所支持的各种文件格式。
		 *	它还有一系列命令行工具来进行数据转换和处理。
		 */
		Mat src = Imgcodecs.imread("D:\\123.jpg");//待匹配图片
		
		HighGui.imshow("原图", src);
		HighGui.waitKey();
		
		Mat gary=new Mat();
		//图片转灰 https://blog.csdn.net/ren365880/article/details/103869207
		Imgproc.cvtColor(src, gary, Imgproc.COLOR_BGR2GRAY);
		/*
		 * 使用默认参数创建HOG检测器。
		 * 默认值(Size(64,128),Size(16,16),Size(8,8),Size(8,8),9)
		 */
		HOGDescriptor hog=new HOGDescriptor();
		/*
		 * 设置线性SVM分类器的系数。 线性SVM分类器的
		 * @param svmdetector系数。
		 * HOGDescriptor.getDefaultPeopleDetector()返回经过训练可进行人员检测的分类器的系数(对于64x128窗口)。
		 */
		hog.setSVMDetector(HOGDescriptor.getDefaultPeopleDetector());

		MatOfRect rect=new MatOfRect();
		/*
		 * 检测输入图像中不同大小的对象。 检测到的对象将作为矩形列表返回。
		 * @param img类型CV_8U或CV_8UC3的矩阵,其中包含检测到对象的图像。
		 * @param foundLocations矩形的向量,其中每个矩形都包含检测到的对象。
		 * @param foundWeights向量,它将包含每个检测到的对象的置信度值。
		 * @param hitThreshold要素与SVM分类平面之间距离的阈值,通常为0,应在检测器系数中指定
		 *  (作为最后一个自由系数),但是如果省略自由系数(允许),则可以指定 在这里手动操作。
		 * @param winStride窗口跨度。 它必须是跨步的倍数。
		 * @param padding填充
		 */
		hog.detectMultiScale(gary, rect, new MatOfDouble(),0,new Size(8,8),new Size(0,0));

		Rect[] rects = rect.toArray();

		for (int i = 0; i < rects.length; i++) {
			/*
			 * 绘制一个简单的,粗的或实心的直角矩形。 函数cv :: rectangle绘制一个矩形轮廓或一个填充的矩形,其两个相对角为pt1和pt2。
			 * @param img图片。
			 * @param pt1矩形的顶点。
			 * @param pt2与pt1相反的矩形的顶点。
			 * @param color矩形的颜色或亮度(灰度图像)。
			 * @param thickness组成矩形的线的粗细。 负值(如#FILLED)表示该函数必须绘制一个填充的矩形。
			 * @param lineType线的类型。 请参阅https://blog.csdn.net/ren365880/article/details/103952856 
			 */
			Imgproc.rectangle(src, new Point(rects[i].x,rects[i].y), new Point(rects[i].x+rects[i].width,rects[i].y+rects[i].height), new Scalar(0,0,255), 2, Imgproc.LINE_AA);
		}

		HighGui.imshow("行人检测", src);
		HighGui.waitKey();
		
	}
	
	
}

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦里藍天

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值