pytorch快速入门(十)cifar-10模型结构可视化

本文介绍了如何使用PyTorch构建CIFAR-10模型,并通过代码解释模型结构。通过Tensorboard进行可视化,详细说明了设置padding和stride的计算过程,以及如何运行和查看结果。
摘要由CSDN通过智能技术生成

pytorch快速入门(十)cifar-10模型结构可视化

前言

框架环境:pycharm;使用pytorch环境,请自行配置
可视化工具:tensorboard
有不懂的可翻阅pytorch快速入门之前的笔记

pycharm相关快捷键
ctrl+/ 注释
Ctrl+P 查看参数,如下,光标移动至想要查看的函数,然后按下快捷键
在这里插入图片描述

CIFAR-10 Model Structure

下图是cifar-10模型结构
在这里插入图片描述

代码

import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.tensorboard import SummaryWriter

#构建模型
class Classification_network(nn.Module):
    def __init__(self):
       super(Classification_network, self).__init__()
       #注1>>>>第一个卷积层,计算出stride=1,padding=2
       # self.conv1 = Conv2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值