编辑距离 、最长公共子串、最长公共子序列以及最长递增子序列

0 、前言

动态规划就是把一个大的问题拆分成几个类似的子问题,通过求解子问题来获得最终的结果,常采用递归的方法。由于递归的方法中会重复地计算相同的子问题,使得效率较低。为减少重复计算相同子问题的时间,引入一个数组,把所有子问题的解存放于该子数组,这是动态规划采用的基本方法。

 编辑距离 、最长公共子串最长公共子序列以及最长递增子序列都是采用动态规划方法进行求解的,而且他们之间有相同和不同之处,下面细作分析。
 

 

1、编辑距离

编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。可以进行的操作分为三种:替换、插入、删除。 俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。 例如将kitten一字转成sitting:
sitten (k→s)
sittin (e→i)
sitting (→g)

编辑距离解题思路:

首先定义这样一个函数——edit(i, j),它表示第一个字符串的长度为i的子串到第二个字符串的长度为j的子串的编辑距离。显然可以有如下动态规划公式:

·        if i == 0 且 j == 0,edit(i, j) = 0

·        if i == 0 且 j > 0,edit(i, j) = j

·        if i > 0 且j == 0,edit(i, j) = i

·        if i ≥ 1  且 j ≥ 1 ,edit(i, j) == min{ edit(i-1, j) + 1, edit(i, j-1) + 1, edit(i-1, j-1) +f(i, j) },当第一个字符串的第i个字符不等于第二个字符串的第j个字符时,f(i, j) = 1;否则,f(i, j) = 0。

 

 

 

0

f

a

i

l

i

n

g

0

 

 

 

 

 

 

 

 

s

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

l

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

0

f

a

i

l

i

n

g

0

0

1

2

3

4

5

6

7

s

1

 

 

 

 

 

 

 

a

2

 

 

 

 

 

 

 

i

3

 

 

 

 

 

 

 

l

4

 

 

 

 

 

 

 

n

5

 

 

 

 

 

 

 

  计算edit(1, 1),edit(0, 1) + 1 == 2,edit(1, 0) + 1 == 2,edit(0, 0) + f(1, 1) == 0 + 1 == 1,min(edit(0, 1),edit(1, 0),edit(0, 0) + f(1, 1))==1,因此edit(1, 1) == 1。 依次类推:

 

0

f

a

i

l

i

n

g

0

0

1

2

3

4

5

6

7

s

1

1

2

3

4

5

6

7

a

2

2

 

 

 

 

 

 

i

3

 

 

 

 

 

 

 

l

4

 

 

 

 

 

 

 

n

5

 

 

 

 

 

 

 

edit(2, 1) + 1 ==3,edit(1, 2) + 1 == 3,edit(1, 1) + f(2, 2) == 1 + 0 == 1,其中s1[2] == 'a' 而 s2[1] == 'f'‘,两者不相同,所以交换相邻字符的操作不计入比较最小数中计算。以此计算,得出最后矩阵为:

 

0

f

a

i

l

i

n

g

0

0

1

2

3

4

5

6

7

s

1

1

2

3

4

5

6

7

a

2

2

1

2

3

4

5

6

i

3

3

2

1

2

3

4

5

l

4

4

3

2

1

2

3

4

n

5

5

4

3

2

2

2

3

 

#include <iostream>
#include <string>
 
using namespace std;
 
int min(int a, int b)
{
   return a < b ? a : b;
}
 
int edit(string str1, string str2)
{
   int max1 = str1.size();
   int max2 = str2.size();
 
   int **ptr = new int*[max1 + 1];
   for(int i = 0; i < max1 + 1 ;i++)
    {
       ptr[i] = new int[max2 + 1];
    }
 
   for(int i = 0 ;i < max1 + 1 ;i++)
    {
       ptr[i][0] = i;
    }
 
    for(int i = 0 ;i < max2 + 1;i++)
    {
       ptr[0][i] = i;
    }
 
   for(int i = 1 ;i < max1 + 1 ;i++)
    {
       for(int j = 1 ;j< max2 + 1; j++)
       {
           int d;
           int temp = min(ptr[i-1][j] + 1, ptr[i][j-1] + 1);
           if(str1[i-1] == str2[j-1])
           {
                d = 0 ;
           }
           else
           {
                d = 1 ;
           }
           ptr[i][j] = min(temp, ptr[i-1][j-1] + d);
       }
    }
 
   cout << "**************************" << endl;
   for(int i = 0 ;i < max1 + 1 ;i++)
    {
       for(int j = 0; j< max2 + 1; j++)
       {
           cout << ptr[i][j] << " " ;
       }
       cout << endl;
    }
   cout << "**************************" << endl;
   int dis = ptr[max1][max2];
 
   for(int i = 0; i < max1 + 1; i++)
    {
       delete[] ptr[i];
       ptr[i] = NULL;
    }
 
   delete[] ptr;
   ptr = NULL;
 
   return dis;
}
 
int main(void)
{
   string str1 = "sailn";
   string str2 = "failing";
 
   int r = edit(str1, str2);
   cout << "the dis is : " << r << endl;
 
   return 0;
}


 

2、最长公共子串和最长公共子序列

最长公共子串(Longest Common Substring)是指两个或者多个字符串中都包含的最长的子符串,其在原字符创中是连续的。最长公共子序列(Longest Common Subsequence)是指两个或者多个字符串中都包含的最长的子序列,其不要求连续,但在原字符创中的相对位置是不变的。

  例如,字符串A:12345;字符串B:23465 。则他们的最长公共子串为:234,最长公共子序列为2345。

2.1 最长公共子序列

最长公共子序列解题思路:

这种题目使用动态规划解决。为了节约重复求相同子问题的时间,引入一个数组,不管它们是否对最终解有用,把所有子问题的解存于该数组中,这就是动态规划法所采用的基本方法。所以此处引进一个二维数组c[][],用c[i][j]记录X[i]Y[j] LCS 的长度,b[i][j]记录c[i][j]是通过哪一个子问题的值求得的,以决定搜索的方向。

我们首先进行自底向上的递推计算,那么在计算c[i,j]之前,c[i-1][j-1]c[i-1][j]c[i][j-1]均已计算出来。此时我们根据X[i] = Y[j]还是X[i] != Y[j],就可以计算出c[i][j]。具体思路如下

if(x[i]==y[j])//如果X[i]和 Y[j]相等,那么c[i][j]的值可以通过1+c[i-1][j-1]得出。而c[i-1][j-1]已经推算出来。

  c[i][j]=1+c[i-1][j-1]

else{//如果X[i] 和 Y[j]不相等,那么x[i]和y[j]的最长公共子序列可能是x[i]与y[j-1]的最长公共子序列,也可能是x[i-1]与y[j]的最长公共子序列,我们求其最大值

  c[i][j]=max(c[i][j-1],c[i-1][j])

}

我们上面的自底向上推算是在c[i-1][j-1]c[i-1][j]c[i][j-1]已经计算出来后再求c[i,j]这个前提下进行的。所以我们构建c[][]这个数组是从头开始的。在创建好c[][]以后我们需要初始化这个二维数组,c[0][0...n]=0c[0...m][0]=0。这是为了便于计算后面的c[1][1]使用。用于表示x[1]y[1]的最长公共子序列,但是我们发现字符数组char* x[]char* y[]是从下标0开始计算的,所以在这里x[i][j]表示的是x[i-1]y[j-1]的最长公共子序列。

最后问题可以用递归式写成:

上述方法只给出了最长公共子序列的长度,但是没有输出最长公共子序列,如前所述我们需要通过一个b[][]来记录c[][]是由哪一步得到的。

1.   b[i][j]=0;//表示c[i][j]c[i-1][j-1]+1得到

2.   b[i][j]=1;//表示c[i][j]c[i][j-1]得到

3.   b[i][j]=-1;//表示c[i][j]c[i-1][j]得到

这样在输出最长子序列的时候,我们从c[][]最后一个位置开始递归遍历。代码实现如下:

/最长公共子序列,英文缩写为LCS(LongestCommon Subsequence)

#include<iostream>
#include<stdlib.h>
using namespace std;
 
#define MaxLen 100
 
int max(int a,int b)
{
   return a>b?a:b;
}
 
void LCSLength(char* s1, char* s2, intlen1, int len2, int c[][MaxLen], int b[][MaxLen])
{
   int i,j;
   //初始化c[][]
   for(i=0;i<=len1;i++)//从0开始
    {
       c[i][0]=0;
    }
   for(j=0;j<=len2;j++)//从0开始或者从1开始都可以
    {
       c[0][j]=0;
    }
 
   for(i=1;i<=len1;i++)//从1开始
       for(j=1;j<=len2;j++)//从1开始
       {
           if(s1[i-1]==s2[j-1])//注意这里是i-1和j-1,因为字符串数组从下标0开始。
           {
                c[i][j]=c[i-1][j-1]+1;
                b[i][j]=0;//表示c[i][j]由c[i-1][j-1]+1得到
           }
               
           else if(c[i][j-1]>=c[i-1][j])
           {
                c[i][j]=c[i][j-1];
                b[i][j]=1;//表示c[i][j]由c[i][j-1]得到
           }
 
           else
           {
                c[i][j]=c[i-1][j];
                b[i][j]=-1;//表示c[i][j]由c[i-1][j]得到
           }
       }
 
   输出c[][]
   //for(i=0;i<=len1;i++)
   //{
   //    for(j=0;j<=len2;j++)
   //    {
   //       cout<<c[i][j]<<" ";
    //    }
   //    cout<<endl;
   //}
}
 
void PrintLCS(char* s1,int i,int j,intb[][MaxLen])
{
   //递归退出条件
   if(i<=0||j<=0)
       return;
 
   if(b[i][j]==0)
    {
       PrintLCS(s1,i-1,j-1,b);
       cout<<s1[i-1];
    }
   else if(b[i][j]==1)//表示c[i][j]由c[i][j-1]得到
    {
       PrintLCS(s1,i,j-1,b);
    }
   else
    {
       PrintLCS(s1,i-1,j,b);
    }
 
}
 
int main()
{
   char* s1="ABCBDAB";
   char* s2="BDCABA";
   int len1=strlen(s1);
   int len2=strlen(s2);
    //cout<<len1<<endl;
 
   int c[MaxLen][MaxLen];//c[i][j]记录X[i]与Y[j] 的LCS 的长度
   int b[MaxLen][MaxLen];//b[i][j]记录c[i][j]是通过哪一个子问题的值求得的,以决定搜索的方向
   LCSLength(s1,s2,len1,len2,c,b);
   PrintLCS(s1,len1,len2,b);
 
   system("pause");
   return 0;
}


2.2 最长公共子串

解题思路:

找两个字符串的最长公共子串,这个子串要求在原字符串中是连续的。可以用动态规划来求解。我们采用一个二维矩阵来记录中间的结果。这个二维矩阵怎么构造呢?首先初始化这个二维数组c[][]

1.   如果x[0..i]=y[0],则c[i][0]=1,否则c[i][0]=0

2.   如果y[0..j]=x[0],则c[0][j]=1,否则c[0][j]=0

然后计算c[i][j]的值,如果x[i]==y[j],则c[i][j]=c[i-1][j-1]+1

直接举个例子吧:"ABCBDAB""BDCABA"(当然我们现在一眼就可以看出来最长公共子串是"AB""BD")

   B D C A B A

0 0 0 1 0 1

1 0 0 0 2 0

0 0 1 0 0 0

1 0 0 0 1 0

0 2 0 0 0 0

0 0 0 1 0 1

1 0 0 0 2 0

代码实现

//最长公共子串,英文缩写为LCS(LongestCommon Substring)
#include<iostream>
#include<stdlib.h>
using namespace std;
 
#define MaxLen 100
 
void LCSubstring(char* s1, char* s2, int len1, int len2,int c[][MaxLen])
{
    int i,j;
    //初始化c[][]
    for(i=0;i<len1;i++)
    {
        if(s1[i]==s2[0])
            c[i][0]=1;
        else
            c[i][0]=0;
    }
       
    for(j=0;j<len2;j++)
    {
        if(s2[j]==s1[0])
            c[0][j]=1;
        else
            c[0][j]=0;
    }
 
    int max=0;
    int m,n;
 
    for(i=1;i<len1;i++)//从1开始
        for(j=1;j<len2;j++)//从1开始
        {
            if(s1[i]==s2[j])
            {
                c[i][j]=c[i-1][j-1]+1;
                if(c[i][j]>max)//记录最长公共字串的位置
                {
                    max=c[i][j];
                    m=i;
                    n=j;
                }
            }
            else
            {
                c[i][j]=0;
            }
        }
 
    for(i=m-max+1;i<=m;i++)//输出公共字串
    {
        cout<<s1[i];
    }
    cout<<endl;
 
    //输出c[][]
    for(i=0;i<len1;i++)
    {
        for(j=0;j<len2;j++)
        {
            cout<<c[i][j]<<" ";
        }
        cout<<endl;
    }
}
 
int main()
{
    char* s1="ABCBDAB";
    char* s2="BDCABA";
    int len1=strlen(s1);
    int len2=strlen(s2);
 
    int c[MaxLen][MaxLen];//c[i][j]记录X[i]与Y[j] 的LCS 的长度
    LCSubstring(s1,s2,len1,len2,c);
 
    system("pause");
    return 0;
}


3.最长递增子序列

3.1参考文献:

http://blog.csdn.net/hhygcy/article/details/3950158

3.2解题思路

既然已经说到了最长公共子序列,就把这个递增子序列也说了。同样的,这里subsequence表明了这样的子序列不要求是连续的。比如说有子序列{1,9, 3, 8, 11, 4, 5, 6, 4, 19, 7, 1, 7 },这样一个字符串的的最长递增子序列就是{1,3,4,5,6,7}或者{1,3,4,5,6,19}

其实这个问题和前面的最长公共子序列问题还是有一定的关联的。

1.   假设我们的初始的序列                 S1= {1,9, 3, 8, 11, 4, 5, 6, 4, 19, 7, 1,    7 }

2.   那我们从小到大先排序一下。得到了S1'={1, 1, 3, 4, 4,   5, 6, 7, 7 , 8, 9, 11, 19}

这样我们再S1S1'的最长公共子序列就是S1的最长递增子序列了。这个过程还是比较直观的。但是这个不是这次要说的重点,这个问题有比较传统的做法的.

我们定义L(j)是一个优化的子结构,也就是最长递增子序列。那么L(j)L(1..j-1)的关系可以描述成

L(j) =max {L(i), i<j && Ai<Aj  } + 1也就是说L(j)等于之前所有的L(i)中最大的的L(i)加一。这样的L(i)需要满足的条件就是Ai<Aj。这个推断还是比较容易理解的。就是选择j之前所有的满足小于当前数组的最大值。

最后求max(L(j))就是最长递增子序列,需要注意的是L[len-1]并不一定是最长递增子序列的长度。

代码实现

#include<iostream>
#include<stdlib.h>
using namespace std;
 
#define MaxLen 100
//方法1:通过求有向无环图的最长路径来求最长递增子序列,通过二维数组构建有向无环图。
int LIS(int arry[],int len,int e[][MaxLen],int L[])
{
    int i,j;
    //初始化有向图
    for(i=0;i<len;i++)
    {
        L[i]=1;//初始化L[]
        for(j=i+1;j<len;j++)
        {
            if(arry[i]<arry[j])
                e[i][j]=1;
            else
                e[i][j]=0;
        }
    }
    //转换为求有向图的最长路径
    for(i=0;i<len;i++)
    {
        for(j=i+1;j<len;j++)
        {
            if(e[i][j]==1&&L[j]<1+L[i])
            {
                L[j]=1+L[i];
            }
        }
    }
 
    int max=0;
    //根据L[i]求最长递增子序列
    for(int i=0;i<len;i++)
        if(L[i]>max)
            max=L[i];
 
    return max;//L[len-1]不一定就最长递增子序列的长度
}
 
//方法2:
int LIS2(int arry[],int len,int L[])
{
    int i,j;
    for(i=0;i<len;i++)
    {
        L[i]=1;//初始化L[]
    }
    for(i=1;i<len;i++)
    {
        for(int j=i+1;j<len;j++)
        {
            if(arry[i]<arry[j]&&L[j]<1+L[i])
                L[j]=1+L[i];
        }
    }
    int max=0;
    //根据L[i]求最长递增子序列
    for(int i=0;i<len;i++)
        if(L[i]>max)
            max=L[i];
 
    return max;//L[len-1]不一定就最长递增子序列的长度
}
 
//打印最长递增子序列
void printString(int p[],int k,int arry[])
{
    if(p[k]==-1)
        return;
 
    printString(p,p[k],arry);
    cout<<arry[k];
 
}
 
//方法3:
int LIS3(int arry[],int len,int L[])
{
    int p[MaxLen];
    int i,j;
    for(i=0;i<len;i++)
    {
        L[i]=1;//初始化L[]
        p[i]=-1;
    }
    for(i=1;i<len;i++)
    {
        for(int j=i+1;j<len;j++)
        {
            if(arry[i]<arry[j]&&L[j]<1+L[i])
            {
                L[j]=1+L[i];
                p[j]=i;//表示arry[j]的前一个元素使arry[i]。
            }
        }
    }
 
    int max=0;
    int k;
    //根据L[i]求最长递增子序列
    for(int i=0;i<len;i++)
    {
        if(L[i]>max)
        {
            max=L[i];
            k=i;
        }
    }
 
    printString(p,k,arry);
    cout<<endl;
    return max;//L[len-1]不一定就最长递增子序列的长度
}
 
 
void main()
{
    int arry[]={5,2,8,6,3,6,9,7};
    int len=sizeof(arry)/sizeof(int);
    int e[MaxLen][MaxLen];
    int *L=new int[len];
    cout<<LIS(arry,len,e,L)<<endl;
    cout<<LIS2(arry,len,L)<<endl;
 
    cout<<LIS3(arry,len,L)<<endl;
    system("pause");
}


但是上面的 LIS LIS2两种实现都没有给出递增子序列本身,只给出了长度。而 LIS3能够输出一个子序列。举例说明其实现方式:

arry[]={5,2893}
L[0...i]                                 p[0...i]
1, 1, 1, 1, 1                             -1, -1, -1, -1, -1
      2, 2                                         00
            2                                              1      
         3                                             2

如上述所示,我们首先初始化数组L[]p[],其中L用于记录递增子序列的长度,而p[]用于回溯递增子序列,其中p[j]=i表示arry[i]->arry[j]是一个递增子序列。我们在L[]中能够求出递增子序列的长度max以及递增子序列的末尾元素所在位置k。然后通过k我们回溯数组p,因此这里使用了递归方式打印递增子序列。

参考:http://www.cnblogs.com/xwdreamer/archive/2011/06/21/2296995.html

http://www.cnblogs.com/biyeymyhjob/archive/2012/09/28/2707343.html

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值