深度学习之环境配置:【CUDA 12.1.1+cuDNN 8.9.1】最新安装教程记录 -- 20240429

前言

本电脑之前已安装CUDA,但一些老版本的torchvision并不支持新的网络。随着科技发展,现重新安装CUDA 12.1.1版本。PS:教程都是通用的,CUDA 11.X版本同样适用。

1、CUDA的下载安装

CUDA版本选择:
查看电脑CUDA支持版本。按住键盘win+ R ,输入cmd打开界面,输入nvidia-smi
PS:这里显示的意思的电脑最高支持的CUDA版本,只要低于该 CUDA Version都可以安装。
本教程选择安装CUDA 12.1版本。

在这里插入图片描述

CUDA toolkit 下载

点击官网下载链接:https://developer.nvidia.com/cuda-toolkit-archive
选择自己需要的CUDA版本(本次下载12.1.1)。具体安装哪个版本,自己选。
一般不选最新的,选个中间的差不多(个人习惯)

在这里插入图片描述

点击要下载的版本,按照提示选择自己对应的系统版本。推荐选择exe.nextwork

在这里插入图片描述

CUDA安装

PS:以下安装截图,是之前的老图,因为本次安装的时候没重新截图,就直接用之前的图。但步骤都是相同的。
直接双击下载好.exe文件,首先会检测系统兼容性。

在这里插入图片描述

下一步,选择自定义安装(推荐使用)

在这里插入图片描述

点击下一步,若是第一次安装CUDA,直接4项全选即可。
如果电脑之前有老版本的CUDA,而且第二次安装的要比第一次版本高的话,选择全选后是自动覆盖上一版本的。简而言之,就是保留最新的版本。
总结就是,别管,直接全选,省事

在这里插入图片描述

选择安装,记住安装路径位置(推荐默认路径,占用空间不是很大,主打一个省事方便),后面需要用到这个路径。

在这里插入图片描述

最后,点击下一步即可

将CUDA添加到环境变量

设置 -> 高级系统设置 ->环境变量->系统变量
PS:环境变量,一般都是自动添加好的。这一步可以省略。

验证CUDA是否安装成功

win+R --> cmd --> 输入nvcc -V(查看版本号)–> 输入 set cuda (查看CUDA设置的环境变量)
如下图,这里我有两个CUDA版本,我没删除。所以,想看自己有几个CUDA,也可以用set cuda这个命令查看。
在这里插入图片描述

2、cuDNN下载安装
cuDNN下载
cuDNN下载链接:https://developer.nvidia.com/rdp/cudnn-archive
PS:下载cuDNN需要注册NVIDIA账号,用邮箱注册,登录即可。
之后选择跟自己的CUDA对应版本的cuDNNN,本次选择cuDNN v8.9.1版本。
点击,然后选择自己系统版本(windows),下载即可

在这里插入图片描述

下载完成,是个压缩包文件。解压之后,会得到以下文件:

在这里插入图片描述

全选文件,复制。然后,将它们全部粘贴到之前CUDA的安装目录下。如果安装CUDA没改默认安装路径,那么你的路径应该也是:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1

注意:在CUDA 12.1安装路径下,已经存在bin、lib等相同名字的文件夹。不用管,直接粘贴,它们会自动添加到对应的文件夹。

添加环境变量

进入环境变量,选择系统变量,找到path,点击新建,将以下路径添加到环境变量:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\include
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\lib
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\libnvvp

在这里插入图片描述

验证cuDNN是否安装成功

win+R–> cmd–>输入命令 cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.1\extras\demo_suite

(1)输入命令bandwidthTest.exe

在这里插入图片描述

(2)输入命令deviceQuery.exe

在这里插入图片描述

至此,安装成功!

### 如何在非默认路径下安装 CUDA 为了实现 CUDA 在非默认路径下的安装,可以按照以下方法操作: #### Windows 平台上的自定义路径安装 当需要在 Windows 上更改 CUDA安装路径时,可以在安装过程中手动指定目标文件夹的位置。启动 CUDA 安装程序后,在安装向导界面中会出现选项让用户选择安装路径[^1]。通过这种方式,可以选择任意磁盘或目录作为安装的目标。 完成安装之后,如果计划使用 cuDNN,则需下载对应的版本并将解压后的三个文件夹(bin、include 和 lib)复制到所选的自定义 CUDA 路径下。例如,假设选择了 `D:\CustomCUDA` 作为新的安装位置,则应将这些文件夹放入该目录内。 最后一步是更新环境变量 PATH 来反映新设置的 CUDA 地址。具体做法是在系统的高级属性里编辑 Path 变量,加入类似于这样的条目:`D:\CustomCUDA\bin;D:\CustomCUDA\libnvvp`。 #### Linux 平台上的自定义路径安装 对于 Linux 用户来说,可以通过运行带有特定参数的脚本来控制安装地点。比如采用.run 文件形式分发的 NVIDIA CUDA 工具包支持命令行模式安装,并允许调整一些关键配置项如 toolkit root directory 等][^[^23]。 以下是针对 .run 文件的一个典型例子: ```bash sudo ./cuda_<version>_linux.run --toolkitpath /usr/local/cuda-custom --silent ``` 这里 `/usr/local/cuda-custom` 就是我们设定的新家目录而不是标准建议使用的 `/usr/local/cuda-<version>` 或者其他预设值之一[^3]。注意这里的 silent 参数表示静默方式执行;如果不希望如此则去掉它以便观察过程中的提示信息。 另外需要注意的是,如果你不是以超级用户身份登录系统而又要改变全局可用资源的话可能还需要额外处理权限问题以及通知其他依赖此服务的应用知晓这个变动情况。 ### 验证安装是否成功 无论在哪种操作系统上完成了上述步骤以后都推荐再次确认整个流程无误。这通常涉及调用几个简单的测试工具来检查硬件兼容性和软件功能正常运作状况。Windows 下可参照之前提到过的 deviceQuery.exe 和 bandwidthTest.exe 实施初步检测; 对于 Unix-like OS 则可以直接尝试编译一个小样例项目看看能否顺利链接至 GPU 加速库函数[^2]: ```cpp // test.cu #include <stdio.h> int main() { int nDevices; cudaGetDeviceCount(&nDevices); for (int i = 0; i < nDevices; ++i) { cudaDeviceProp prop; cudaGetDeviceProperties(&prop, i); printf("Device Number: %d\n", i); printf(" Device name: %s\n", prop.name); printf(" Memory Clock Rate (KHz): %d\n", prop.memoryClockRate); } } ``` 接着利用 NVCC 编译器构建二进制文件并立即运行之: ```bash $ nvcc -o test test.cu $ ./test ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值