相同点:
- 都是前馈型神经网络;
- 只要包含足够多隐层神经元,就能以任意精度逼近任意复杂度的连续函数。
不同点:
- BP是通过不断的调整神经元的权值来逼近最小误差的,其方法一般是梯度下降。而RBF是通过对输入与函数中心点的距离来算权重的,所以第一步就要确定神经元的中心(常用方法有随机采样、聚类等);
- BP的激活函数是Sigmoid函数,RBF的激活函数是径向基函数(如高斯函数);
- BP具有收敛速度慢,容易陷入局部最优的缺点,RBF具有收敛速度快,全局逼近的特点;
- BP中间层可以有很多层,而RBF中间层只有一层;
通过以上比较很明显看出RBF要优于BP,但是BP是一种基础的神经网络,其实现简单仍然使用广泛,在训练RBF时可以利用BP来确定参数。