BP与RBF神经网络比较

相同点:

  1. 都是前馈型神经网络;
  2. 只要包含足够多隐层神经元,就能以任意精度逼近任意复杂度的连续函数。

不同点:

  1. BP是通过不断的调整神经元的权值来逼近最小误差的,其方法一般是梯度下降。而RBF是通过对输入与函数中心点的距离来算权重的,所以第一步就要确定神经元的中心(常用方法有随机采样、聚类等);
  2. BP的激活函数是Sigmoid函数,RBF的激活函数是径向基函数(如高斯函数);
  3. BP具有收敛速度慢,容易陷入局部最优的缺点,RBF具有收敛速度快,全局逼近的特点;
  4. BP中间层可以有很多层,而RBF中间层只有一层;

通过以上比较很明显看出RBF要优于BP,但是BP是一种基础的神经网络,其实现简单仍然使用广泛,在训练RBF时可以利用BP来确定参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值