15、1812:社交网络中的冲突与博弈解析

1812:社交网络中的冲突与博弈解析

在当今复杂的社交网络环境中,我们常常能看到各种形式的冲突和竞争,这些现象背后蕴含着怎样的规律和逻辑呢?让我们从古老的兵法智慧出发,结合现代社交网络的特点,深入探讨其中的奥秘。

1. 孙子兵法与社交网络中的“捕获”概念

孙子在《孙子兵法》中提到“凡军好高而恶下,贵阳而贱阴”,在社交网络中,“高地”和“向阳处”又该如何理解呢?随着技术的发展,这些概念是否发生了变化?比如在网络中,名人是否就如同“高地”,像特朗普在推特上的影响力一般?

孙子兵法本质上是一本战争的“食谱”,它为战争的规划、战斗和胜利提供了方法,但前提是读者要理解其中的“食材”。在社交网络里,“捕获”这一概念有着独特的体现。选举就是一个很好的例子,当对有 k 个政党的选举进行建模时,引入一个包含所有未决定选民的“政党”是很有用的。选举日到来时,这个“政党”会被其他政党吸纳,部分未决定选民就被其他政党“捕获”,成为该政党的成员。

在国际象棋和围棋中,也存在类似的“捕获”现象,一方的棋子或棋子群会被另一方完整地“捕获”,在线性代数中,这种情况有时被称为“投影”。

2. 连续冲突中节点的捕获

以美国选举为例,由于选举人团制度,美国选举结果往往由少数摇摆州决定。许多州在几十年间都不会改变其政治倾向,而摇摆州之所以有巨大影响力,是因为它们容易被候选人或政党“捕获”或说服。

例如佛罗里达州,在 2000 - 2016 年的四次总统选举中,它三次改变阵营:2000 年被共和党捕获,2008 年被民主党捕获,2016 年又被共和党捕获。

从形式上定义,在社交网络中,如果两个连续冲突(σ1,σ2)具有

内容概要:本文围绕信息融合状态估计展开,重点介绍基于Kalman滤波和现代时间序列分析方法的状态融合技术,涵盖集中式融合估计、分布式融合估计(包括按矩阵加权、对角阵加权和标量加权)以及协方差交叉融合等多种融合策略,并提供完整的Matlab实现代码。文档还涉及多源数据融合、信号处理、信道估计、谐波去噪、路径规划、电力系统优化等多个相关领域,展示了多种先进算法在实际系统中的建模仿真应用。; 适合人群:具备一定控制理论、信号处理或自动化背景,熟悉Matlab编程,从事科研或工程应用的研发人员、研究生及高年级本科生; 使用场景及目标:①深入理解多传感器信息融合的基本原理实现方式;【信息融合状态估计】基于Kalman滤波和现代时间序列分析方法,利用集中式融合估计、分布式融合估计(按矩阵加权、按对角阵加权、按标量加权)、 协方差交叉融合等方法实现对状态的融合估计(Matlab)②掌握Kalman滤波在状态估计中的核心作用及不同融合结构的性能差异;③通过Matlab代码复现典型论文案例,提升科研仿真能力算法实现水平; 阅读建议:建议结合文中提供的Matlab代码逐项实践,优先理解Kalman滤波框架融合准则的数学推导,再拓展至其他应用场景,注意区分集中式分布式融合的适用条件,强化对不确定性建模估计一致性的认识。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值