连续子数组的最大和

剑指offer第30题:
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)

理解:

一个很重要的思路是前面的临时加和是否仍为正数,只要是正数对于后面总值就是有益的,不管有多长,中间发生了什么。所以只需要写一个for循环计算临时的加和tempSum,如果为负就清空,更新tempSum为新的array[i]。判断临时加和是否已经超过了sum,如果超过则更新,否则保留。

public class Solution {
    public int FindGreatestSumOfSubArray(int[] array) {
        if(array==null || array.length==0){
            return 0;
        }
        //创建一个总和变量,和一个临时加和变量
        //初始化的值不能为0,因为可能所有数都是负数
        int sum = array[0];
        int tempSum = array[0];
        for(int i = 1; i < array.length; i++){
            tempSum = tempSum >= 0 ? tempSum+array[i] : array[i];
            sum = tempSum > sum ? tempSum : sum;
        }
        return sum;
    }
}
知识点:
  • 子数组加和最大问题;
  • 变换思维方式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值