Kaggle | Give Me Some Credit - 信用违约概率预测

### Kaggle 'Give Me Some Credit' 竞赛数据分析解决方案 #### 数据概述 KaggleGive Me Some Credit’ 是一项专注于金融领域信用评分预测的比赛。该数据集的目标是通过一系列客户属性来预测客户的违约可能性。这些属性包括但不限于年龄、债务比率、月收入等。通过对数据的深入分析,可以构建有效的评分卡模型用于风险评估。 #### 数据准备与清洗 在实际应用中,数据预处理是一个至关重要的环节。对于‘Give Me Some Credit’的数据集而言,需要特别关注缺失值的填充以及异常值的检测和修正。例如,在月收入字段 `MonthlyIncome` 中发现其分布接近于正态分布[^2],这表明可以通过统计方法填补部分缺失值并保持数据的一致性。 #### 特征工程 为了提升模型性能,通常会引入特征工程技术。基于Pyspark框架能够高效完成大规模数据上的特征提取工作。具体来说,可以从以下几个方面入手: - **数值型变量标准化**:如对连续型变量(比如 Monthly Income 和 DebtRatio)做缩放变换。 - **类别型编码转换**:将离散分类标签转化为适合算法输入的形式,常用独热编码 (One-Hot Encoding) 或目标均值映射(Target Mean Mapping)[^3]。 #### 建立评分卡模型 利用逻辑回归(Logistic Regression),配合权重因子(WOE, Weight of Evidence) 及信息价值(IV, Information Value) 方法论设计传统意义上的信贷评分体系。这种方法不仅具备良好的解释能力而且便于后续业务实施阶段的操作管理。 ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression # 加载训练数据 data = pd.read_csv('give_me_some_credit.csv') X = data.drop(['SeriousDlqin2yrs'], axis=1).values y = data['SeriousDlqin2yrs'].values # 划分测试集合验证集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) # 初始化逻辑回归模型 model = LogisticRegression() # 训练模型 model.fit(X_train, y_train) print(f"Accuracy on the test set: {model.score(X_test, y_test)}") ``` 上述代码片段展示了如何使用Python中的Scikit-Learn库快速搭建一个基础版的二元分类器来进行初步实验[^1]。 #### 结果解读与优化建议 最终得到的结果应该结合ROC曲线下的面积(AUC Score)以及其他指标综合考量。如果初始表现不佳,则可考虑进一步调参或者尝试其他更复杂的机器学习技术,诸如随机森林(Random Forests), 梯度增强决策树(Gradient Boosting Decision Trees)等等。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值