PCA主成分分析

今天来讲下PCA,如果大家对多元统计分析和矩阵形式比较熟悉的话,看起来会很轻松。

假设表示n个样本,每个样本包含p维特征。则数据集的协方差矩阵为

其中为每维特征的均值。

我们希望协方差矩阵是对角化的,这样就表示每维特征是不相关的。但是实际上并不是对角化的。所以我们需要用PCA来预处理数据,使变换后数据的协方差矩阵式对角化的。
PCA实际上就是将X做变换,投影到另一组标准正交基U=(u1,u2,...)上,设变换后的数据集为XU,我们希望XU的协方差矩阵是对角化的,这样就表明变换后的特征是不相关的。

处理步骤

我们记变换后的数据集为

Y的协方差矩阵为

我们希望为对角阵。根据线性代数知,的特征值构成(从大到小排列表示特征的重要程度)。的特征向量构成U=(u1,u2,...),是正交基。

 

PCA完成!



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值