微分方程和差分方程的区别与联系

前言 微分方程和差分方程的知识我们应该都知道,因为在数字信号处理中微分方程涉及了模拟滤波器,差分方程涉及了数字滤波器。但是有时会搞不清楚,或者说会在概念上混淆。虽然在做算法过程中可能不会受到太大影响,但是这种基础知识我们是有必要搞清楚的,这是算法人员的基本素养。下面就分别来讲讲微分方程、差分方程以...

2019-01-17 09:26:42

阅读数:10

评论数:0

[翻译] Python 在信号处理中的优势之二

MATLAB VS. PYTHON 使用MATLAB的理由 MATLAB是备受推崇的软件,领先于其他竞争对手; Simulink没有真正的替代方案; 它具有快速的矩阵数学,良好的调试器和便于数值分析的特殊语法: 数组切片:A(:,5:10) = 33, 序列创建:B = [1:3:30], 数组拼...

2019-01-09 12:14:02

阅读数:1024

评论数:1

Python 在信号处理中的优势

休息了几天回来了 前言 本篇是对Pylab的小试牛刀,也是对许多其他主题的过渡——包括《编码速度估计的长时间等待的后果》。 在工作中,我们使用 MATLAB 作为数据分析和可视化软件。但是在我的组里它仅仅是以共享平台方式来使用。并且我讨厌必须要共享。:-)所以我开始看看另外的选择。 Scila...

2019-01-02 15:43:03

阅读数:40

评论数:0

地震信号系列完结篇-反卷积方法

前言 本篇将详细地讲解地震信号中用到的反卷积方法。反卷积方法的作用在文章 地震信号的一些基本概念 中已经阐述过,简单的说就是:在压缩原信号的同时,对频谱进行补偿(反卷积的输出信号)。而在地震信号处理中,除了前面的优势,该方法还可以使反射系数成为尖脉冲,从而提高地震记录的分辨率。 地震记录:...

2018-12-28 19:03:27

阅读数:22

评论数:0

地震信号-相关子波零相位化

本文首发于 算法社区 dspstack.com,转载请注明出处,谢谢。 前言 今天讲下地震信号中相关子波的零相位化过程 子波整形 子波的振幅不变,改变相位谱的滤波器,以达到子波形状改变的过程称为子波整形或整形滤波 子波零相位化 假设相关子波的时间序列表示为 w(t),则相关子波...

2018-12-26 20:01:44

阅读数:32

评论数:0

地震信号的一些基本概念

本文首发于 算法社区 dspstack.com,转载请注明出处,谢谢。 前言# 最近看了一些关于地震信号相关的一些文献,现就此把这些知识写出来,就当再强化下 可控震源和扫描信号# 可控震源是指通过一个与大地紧密耦合的振动平板,以反作用方式向地下传送一组连续振动的弹性波信号(又称扫描信号),...

2018-12-23 20:25:31

阅读数:52

评论数:0

Savitsky-Golay 平滑算法

本文首发于 算法社区 dspstack.com,转载请注明出处,谢谢。 名称# Savitsky-Golay平滑算法 作用# 信号平滑处理可以除去高频噪音对数据信号的干扰,是消除噪音最常用的一种方法 算法原理# 通过多项式对移动窗口内的数据进行多项式最小二乘拟合,算出窗口内中心点关...

2018-12-18 22:46:23

阅读数:35

评论数:0

朴素贝叶斯分类器

本文首发于 算法社区 dspstack.com,转载请注明出处,谢谢。 定义# 存在变量集 ,其中 ,为对象实例, 为属性变量,  为分类变量。 假定各属性变量独立的作用于分类变量,即各属性变量对分类变量的作用各自独立,这一假定称作类条件独立。这一假定为了简化计算,在此意义下称为“朴素”的。 ...

2018-12-16 11:10:37

阅读数:32

评论数:0

倒谱和同态去卷积

本文首发于 算法社区 dspstack.com,转载请注明出处,谢谢。 前言# 倒谱的内容比较少,比较相关的就是同态系统去卷积了,所以把这两个放在一起了。 倒谱# 我们考虑一个具有z变换的序列 {x(n)} 。我们假设 {x(n)} 是一个稳定的序列,那么 X(z) 在单位圆上是收敛的...

2018-12-14 22:26:31

阅读数:26

评论数:0

隐含马尔可夫模型——Hidden Markov models (HMM)

本文首发于 算法社区 dspstack.com,转载请注明出处,谢谢。 写在前面# 统计学是个好东东,说它是个好东东,因为统计学不像其他有些学科,它不仅在科研领域应用广泛,在平常的生活中我们也会经常碰到。当然我们要研究的主要还是在科研领域的应用。 本文讲讲经典的隐含马尔可夫模型,同时说明本...

2018-12-13 20:41:11

阅读数:35

评论数:0

自相关-能量密度谱,互相关-互能量密度谱,系统识别

本文首发于 算法社区 dspstack.com,转载请注明出处,谢谢。 写在前面# 我发现很多小伙伴对相关操作、能量密度谱以及系统识别之间的关系比较生疏,本文就讲讲它们之间的关系,看看能否解开各位小伙伴的疑惑 互相关和互能量密度谱# 引用上一篇卷积和互相关操作的关系中的互相关公式 (2...

2018-12-10 13:44:17

阅读数:51

评论数:2

卷积和互相关操作的关系

本文首发于 算法社区 dspstack.com,转载请注明出处,谢谢。   前言# 卷积和互相关操作在数字信号处理中都是非常重要的公式,卷积是迟缓线性时不变系统的输出响应,而相关操作则在系统识别方面非常有用,现在就来讲讲卷积和相关操作之间的关系。 卷积操作# 首先,给出卷积公式 卷积公式...

2018-12-07 14:14:40

阅读数:29

评论数:0

[配翻译]A Fixed-Point Introduction by Example

本文首发于 dspstack.com,转载请注明出处,谢谢。 作者:Christopher Felton,翻译:ALLEN 翻译感想# 翻译一篇文章,不仅需要专业上的知识,更需要的是耐心,和琢磨作者原文的真正含义,以负责任的态度对待每一篇文章,因为心里想着如何能让读者获取到正确的知识 ...

2018-12-05 20:52:37

阅读数:33

评论数:0

语音识别基础算法——动态时间规整算法

本文首发于:算法社区 dspstack.com,转发请注明出处。 前言# 动态时间规整算法,Dynamic Time Wraping,缩写为DTW,是语音识别领域的一个基础算法。 算法的提出# DTW的提出是为了解决或尽量解决在语音识别当中的孤立词识别不正确的问题。该问题简单描述为:在识别...

2018-12-04 20:27:38

阅读数:31

评论数:0

最短路径-Dijkstra 算法

本文首发于:算法社区 dspstack.com,转发请注明出处。 前言# 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题。迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展...

2018-12-04 14:37:33

阅读数:17

评论数:0

蒙特卡洛方法试验的一般过程和经典例子

本文首发于:算法社区 dspstack.com,转发请注明出处。 前言 蒙特卡洛方法是基于概率统计为基础的近似解求解方法,它是通过大量试验来使近似解逼近准确解,而大量的试验又是基于大数极限理论,试验越多,其解越精确,误差也就越小。下面分别讲述蒙特卡洛试验的解题步骤、实际使用中需要的注意点,最后...

2018-12-04 14:26:02

阅读数:35

评论数:0

蒙特卡洛方法的介绍

本文首发于:算法社区 dspstack.com,转发请注明出处。 二十世纪四十年代,闻名世界的USA-洛斯阿拉莫斯国家实验室, 曼哈顿计划 的成员 John von Neumann(冯.诺依曼), Stanislaw Ulam(乌拉姆) 和 尼古拉斯 率先提出了蒙特卡洛方法。蒙特卡洛方法是以概率...

2018-12-04 14:13:48

阅读数:35

评论数:0

Matlab中.mat数据某变量保存为txt

转自:http://blog.csdn.net/boyxiaolong/article/details/7046488 因为要在matlab和VC之间搞来搞去,因此数据要转来转去。 matlab下处理完之后,把结果保存为.mat数据,但大家都知道VC无法直接处理滴,所以要转为txt文件格式...

2013-12-18 18:56:57

阅读数:496

评论数:0

统计分析之偏最小二乘回归

偏最小二乘回归 算法原理 给定p个自变量 和和q个因变量 ,各自有n个样本点,则自变量和因变量矩阵为 该算法的基本思想是,从原始变量中提取出K对潜在成份对tk和uk,k=1,2,...K;并通过潜在成分对数据进行建模。模型构建时要求潜在成份对能最大限度的代表原始数据X和Y...

2013-05-25 19:34:50

阅读数:376

评论数:0

分类原理:判别分析

算法做了几年,尽然在博客上没留下什么脚印,主要写博客太麻烦了~,现在开始写点系列文章,以示点凭证~,今天写的是数据挖掘的基本定理及原理:分类原理之判别分析。 从概率统计的角度来看,判别分析问题可归结为:设有个组(或类或总体),所有组的样品都有相同的个指标,可表示为一个维向量,这组的分布函数为...

2013-05-24 22:11:01

阅读数:460

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭