统计分析之偏最小二乘回归

偏最小二乘回归

算法原理

给定p个自变量


和和q个因变量
,各自有n个样本点,则自变量和因变量矩阵为

该算法的基本思想是,从原始变量中提取出K对潜在成份对tk和uk,k=1,2,...K;并通过潜在成分对数据进行建模。模型构建时要求潜在成份对能最大限度的代表原始数据X和Y的同时,它们之间的协方差最大化。对于抽取潜在成份对

,偏最小二乘需要满足如下优化条件:

  1. 变量t1,能尽可能好的表示矩阵的信息,即
  2. 将这三个条件整合起来,可以构成一个t1和u1之间协方差最大化的极值问题:

    另外潜在成份是原始变量的线性变换,可表示为:在上述约束条件下,求的极值,

    已标准化。

    我们采用拉格朗日乘子,记

    推导后可以得到:



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值