对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为Euler's totient function、φ函数、欧拉商数等。例如:φ(8) = 4(Phi(8) = 4),因为1,3,5,7均和8互质。
Input
输入一个数N。(2 <= N <= 10^9)
Output
输出Phi(n)。
Input示例
8
Output示例
4
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 10010
char a[N];
int b[30];
int main(){
int i,j,n,m;
scanf("%s",a);
int len=strlen(a);
memset(b,0,sizeof(b));
for(i=0;i<len;i++){
if(a[i]>='a') b[a[i]-'a']++;
else if(a[i]<'a') b[a[i]-'A']++;
}
sort(b,b+26);
long long int sum=0;
int k=26;
//for(i=0;i<26;i++) cout<<b[i]<<endl;
for(i=25;i>=0;i--){
if(b[i]==0) break;
sum+=(k*b[i]);
k--;
}
cout<<sum<<endl;
return 0;
}