新年彩灯Ⅰ
Description
新年将至,YY准备挂一排彩灯,已知彩灯刚挂完的彩灯共有N盏(编号为1,2,3,……),并且都是灭的。彩灯的闪烁由一段程序控制。
每一秒钟程序会生成两个正整数a和b(1<=a,b<=N),然后将编号为a和b之间的所有灯的状态改变一次,即如果灯i是灭的,那么经过一次改变,灯i会亮,如果灯i是亮的,经过一次改变,灯i会灭。
当YY看着自己挂的彩灯不断闪烁的时候,问题来了,YY想知道任意时刻某一区间灯的状态。
Input
多组测试数据,每一组第一行是一个整数N(1<=N<=1000000)和一个整数M(1<=M<=3000)。
然后是M行数据,包括以下两种形式:
1 a b 表示灯a和灯b之间的灯(含灯a和灯b)变换一次状态。
0 x y 表示YY想知道此刻灯x到灯y(包含灯x和灯y)的状态.
Output
对于每次YY想知道结果的时候,输出一行灯的状态(编号小的灯优先),如果是亮的输出”1”,否则输出”0”;
Sample Input
3 3
1 1 2
1 2 3
0 1 3
Sample Output
101
题意:
如果第一个输入的是1的话,那么在区间[l,r]上面都是状态会发生改变,输入的是0的话,状态不改变,输出区间内的灯的0,1状态。
思路:
这种树状数组的题目虽然说我之前有做过,但我并不是特别会,这次比赛的时候也没有做出来,后来队友跟我讲了一下他的做法,我觉得豁然开朗,第一:这个首先是树状数组做,把树状数组的三个模板写一下,其次,这里用到了差分的方法,对我们来说都是比较新颖的,我下面会讲一下这个,最后,要判断这是单点查询和区间修改的题目。
差分法:
来介绍一下差分----(这个真的好用,今天用了这个树状数组妙解)
设数组a[]={1,6,8,5,10},那么差分数组b[]={1,5,2,-3,5}
也就是说b[i]=a[i]-a[i-1];(a[0]=0;),那么a[i]=b[1]+....+b[i];(这个很好证的)。
假如区间[2,4]都加上2的话
a数组变为a[]={1,8,10,7,10},b数组变为b={1,7,2,-3,3};
发现了没有,b数组只有b[2]和b[5]变了,因为区间[2,4]是同时加上2的,所以在区间内b[i]-b[i-1]是不变的.
所以对区间[x,y]进行修改,只用修改b[x]与b[y+1]:
b[x]=b[x]+k;b[y+1]=b[y+1]-k;
下面附上链接:https://blog.csdn.net/rnzhiw/article/details/81289077
这道题的代码:
#include<bits/stdc++.h>
using namespace std;
int tree[1000005];//表示所有节点的0,1序列
int n,m;//n表示数据范围,m表示几组数据
//树状数组模板
int lowbit(int i)
{
return i&-i;
}
void add(int i,int k)
{
while(i<=n)
{
tree[i]+=k;
i+=lowbit(i);
}
}
int sum(int i)
{
int sum=0;
while(i>0)
{
sum+=tree[i];
i-=lowbit(i);
}
return sum;
}
int main()
{
int flag,l,r,t;//flag标记0和1,l,r为左右区间
while(~scanf("%d %d",&n,&m))
{
memset(tree,0,sizeof(tree));//数组初始化
for(int i=1;i<=m;i++)
{
scanf("%d %d %d",&flag,&l,&r);
if(l>r)
{
t=r;r=l;l=t;
}
if(flag==1)//如果是改变灯的状态
{
add(l,1);//差分的方法
add(r+1,-1);
}
else//该组数据后直接输出
{
for(int j=l;j<=r;j++)
{
if(sum(j)%2==1) printf("1");//如果sum【j】是奇数的话说明结果是1,sum【j】是偶数的话说明是0
else printf("0");
}
printf("\n");
}
}
}
return 0;
}
如果对树状数组不了解的话,参考一下:https://blog.csdn.net/rnzhiw/article/details/81275375