- 博客(11)
- 收藏
- 关注
原创 凡是鼓励你去做的事,那是有坑需要你填
但是禁止你去做的事,那是有利润却不想跟你分享;凡是鼓励你去做的事,那是有坑需要你填;凡是要你不惜代价的,意味着你就是这个代。凡是要你顾全大局的,你都不在这个局里。
2025-01-25 08:57:52
105
原创 钱塘征信牌照对蚂蚁而言可能是百亿级的增量
截至2024年8月末,朴道征信系统累计收录自然人超过6.44亿人,累计收录企业和个体工商户超7600万户”,从新闻的数据可以看出来,朴道征信的发展不错,当前人行征信的报告查询,一笔是2元,以此价格打个折扣做类推,朴道征信的累计收入属于数百亿级别,而朴道征信成立于2020年,到现在也就4-5年时间,基本上推测朴道征信可以做到数十亿-百亿/年级别的收入。蚂蚁的花呗和借呗是万亿级别的信贷规模,个人征信数据的加入,即使对风控能力的提升是0.1%,带来的利润也是数十亿级别的,这里的提升不可谓不巨大。
2024-11-18 15:27:29
644
原创 我们终将成为无用之人
机器人成了最大的生产资料,这部分国之重器必然由TOP 1%的人掌控,这部分人掌握生产资料,拥有最大的生产力和最和谐的生产关系(机器人的生产关系非常融洽),制定和掌握社会的规则;到了这个时候,生产力有了极大的富余,以水稻为例,从插秧、播种、施肥到最后的收割,全部都是机器人自动化生产,几乎可以认为大部人不用做任何事,就能有饭吃有水喝。也许这些无用之人的唯一的作用,是为人类的存续繁衍做贡献,社会从大基数的新生人群中筛选出优秀的人进入11%的圈层,剩下的人继续成为无用之人。此时的我们,活的有意思吗?
2024-10-30 16:45:52
263
原创 NoteBookLM-个人智能知识库(重点看我的个人思考)
首先,NoteBookLM将个人知识库与大语言模型结合,支持用户通过对话的方式,了解个人知识库的知识。也就是说,有一个chatgpt,背后的知识范围是你个人知识库上传的知识,这个gpt可以跟你聊天,然后你可以通过gpt对知识进行总结、理解。更形象地说是,你有一座图书馆,然后请了一位图书管理员,这个管理员对整个图书馆的知识了如指掌,你不用去翻图书了,直接跟这个管理员对话,就能获取想要的知识。想象一个场景,你上传一本书的PDF,然后AI消化吸收这本书的所有知识后,你就可以通过提问的方式,获取到这本书中的知识。
2024-10-18 14:36:31
1921
原创 同事因361制度而离开,令我思考361制度的好坏
另外一种可能是,公司在业务成熟期,也一直维持着相当的薪资来吸引人才,但是由于业务处于成熟期,也不太可能增加薪资投入,361制度得以阶段性维持,但是当外部新的业态出现,新的公司开出更有吸引力的政策,这时候人才就会被逐步吸走,那么从公司层面感知到就是人才越来越难招聘了,但是薪资投入又没法提升到与新业态一样,这时候人才招聘就会成为公司面临的问题,361制度就自然而然地瓦解了。执行361制度的前提条件是,公司对优秀人才的吸引力很高,不愁招人,通过不断招人来填补走掉的10%员工,来实现组织的血液循环。
2024-10-15 15:02:56
589
原创 小马智行楼天成关于AI的观点大幅刷新我的认知
从前我的认知,一直是优质数据训练AI模型,但是从楼的观点延展开来,我想到了alphaGo和alphaZero,alphaGo就是数据训练模型的典型代表,而alphaZero则是0数据起步,通过规则的摸索和试错得到的模型,在这个例子里,alphaGo是L2,alphaZero是L4,L2作为辅助驾驶,驾驶表现只要表现得跟人一样就行,所以用大量的数据训练,能够灌出L2级别的智能驾驶,但天花板也相对很明显。2)L2和L4走的是两条相反的路,L2做的越好可能L4做的越差,L4做的越好可能L2做的越差。
2024-10-10 11:25:46
705
原创 中国的SAAS为什么出不来“salesforce“
中国的人力资源供给丰富,甚至过剩,导致中国的人力价格就很便宜,中国老板在决策使用软件还是通过堆人头来解决问题的时候,会权衡投入,最后发现人力价格也不贵,直接用堆人头的方式可以最快地解决问题;我的看法是,现在已经有了开始的条件——出生人口逐年下降,等到这一代出生人口逐步迈入工作年龄,而老一辈逐步退休,中国的人力资源供给会逐步从丰富转移到平衡,这个时候中国SAAS的机会就到了,但这需要几十年的时间,还需要慢慢等。回来后,我深度思考很久,得到的答案是,“中国的人力资源供给丰富,甚至过剩”。
2024-10-09 15:35:22
290
原创 读《明朝那些事》分享一段关于人生的感悟
从前以为不能接受的,最后也在时间的磨合下,慢慢接受了,生活充满想象,遗憾也不过是常态,其实人生就是一个享受过程的过程,无论当初做什么选择都会后悔,我们无法站在现在的角度,去批判当时的自己,就算时间重来一次,以当时的心智和阅历,还是会做出同样的选择。我们最终要去追寻的,也许不是什么完美的,小时候觉得忘带作业是天大的事,高中的时候觉得考不上大学是天大的事,恋爱的时候 觉得跟喜欢的人分开是天大的事,现在回头看看,那些难以跨过的山,其实都在不知不觉中跨过了。突然就释怀了,人生短短几十年,怎么过都不会活着离开。
2024-10-04 22:08:29
1359
原创 科技树上互联网是通用AI的前置节点
而互联网恰恰是海量优质数据产生的温床,互联网出现后,大量线下的数据被搬到了线上(各种知识、文献),大量人类的观点在互联网上碰撞,随之在互联网上存储着各式各样的海量数据,而海量优质数据也来自于此。因此英伟达的显卡+CUDA的出现,为大模型的出现提供了有力的支撑。但是如果从根上想,其实互联网是如上3个条件产生的必备条件,没有互联网则没有海量数字化的数据,没有互联网硬件算力无法得到有效的发展,没有互联网就没有算法架构产生的条件(没有互联网就没有谷歌,也就不会有transformer)。1)海量数字化的优质数据。
2024-09-20 11:16:14
381
原创 支付宝的“碰一碰”到底是不是新瓶装旧酒
近期支付宝的碰一碰产品如火如荼地上线了,不少用户已经体验了相关服务:无须打开支付宝App,将手机靠近商户的POS机,通过NFC(近场通信)技术,“碰一碰”就能付款。有人说,“碰一碰”跟刷脸支付、刷掌支付没什么区别,可能只是新鲜的技术尝试,不会掀起太大的风浪;也有人说“碰一碰”的体验还是比较好的,未尝不能创造新的局面。
2024-09-19 16:33:57
2277
原创 为什么相同的问题输入到GPT会得到不同的答案
另外举个chatgpt的例子,比如我有一个问题“国庆去哪个景区玩好”,chatgpt拿到这个问题后,预测这个这个问题的下一个字应该是什么,如上图所示,当他预测到“国庆去哪个景区玩好 国庆假期”的后一个字的时候,产生了概率分歧,如上图可选的是“是”和“选”(也可能是其他字),gpt概率性地选择了这两个字,从而产生了两种完全不同的答案。当理解到,AI是一门概率学,就能理解,面对相同的输入,AI的输出,是可能有多个答案的,只不过每个答案的概率不同,我们只是从中按照一定的策略选出答案。如下我给出了一个图示范例。
2024-09-18 19:51:24
1641
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人