非对称密码体制(公钥密码体制)中最基础的思路——MOD的运算

博客探讨了模运算中两个常见的错误结论——'和的余等于余的和'与'积的取余等于每个数取余的乘积'。通过反证法给出具体例子说明这两个结论在某些情况下并不成立,并提供了正确的证明方法,利用数学归纳法证明了模运算的结合律和分配律的正确性。
摘要由CSDN通过智能技术生成

“和的余等于余的和”这个结论可能是错误的。

简单举个例子,5除3(余数是2)和4除3(余数是1),(5+4)除3余数是多少呢?余数是0(能被整除)。

“积的取余等于每个数取余的乘积”这个结论也可能是错误的。
第二个例子,5除3(余数是2)和2除3(2除3商0,余数是2),(5*2)除3余数是多少呢?余数是1。

“和的余等于余的和”以及“积的取余等于每个数取余的乘积”这两个结论都不是普适结论,就是在一定的条件下是不正确的。我这个回答采用的是反证法


参考百度百科《MOD运算》

运算公式
结合律((a+b) mod p + c)mod p = (a + (b+c) mod p) mod p
((ab) mod p * c)mod p = (a * (bc) mod p) mod p
交换律(a + b) mod p = (b+a) mod p
(a × b) mod p = (b × a) mod p
分配律((a +b)mod p × c) mod p = ((a × c) mod p + (b × c) mod p) mod p
(a×b) mod c=(a mod c * b mod c) mod c
(a+b) mod c=(a mod c+ b mod c) mod c
(a-b) mod c=(a mod c- b mod c) mod c

(a+b) mod c=(a mod c+ b mod c) mod c

正确的证明方法:就是不妨设
a = k1c + r1 (其中r1=a mod c)
b = k2
c + r2 (其中r2=b mod c)
a+b = (k1 + k2) c+ (r1 + r2)
如果(r1 + r2) >= c ,则
(a+b) mod c = (r1 + r2) -c
否则
(a+b) mod c = (r1 + r2)
综上:(a+b) mod c=(a mod c+ b mod c) mod c

(a×b) mod c=(a mod c * b mod c) mod c

不妨设
a = k1c + r1 (其中余数r1=a mod c)
b = k2
c + r2 (其中余数r2=b mod c)
a×b = (k1c + r1) * (k2c + r2)=k1k2(c^2)+k1r2c+k2r1c+r1r2
(a×b) mod c = { [ k1*k2*(c^2) ] mod c + [ k1*r2*c ] mod c+[ k2*r1*c ] mod c+[ r1*r2 ] mod c } mod c=[(r1
r2)mod c ] mod c = (r1r2)mod c
这里有两个结论:
(a×b中的因式k1
k2*(c^2)、k1r2c、k2r1c含有c,就是c倍数,mod c则一定被整除,所以余数为0。)
(a mod x) modx =a mod x,因为a mod x的结果是比x的绝对值小的,再次mod就是它本身。

综上:(a×b) mod c=(a mod c * b mod c) mod c

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值