克隆巴赫系数 Cronbach’s alpha 是量表问卷信度(Reliability)的一个指标,一般大于 0.7 表示问卷的信度可以接受,大于 0.8 表示问卷的信度良好,大于 0.9 表示问卷的信度优秀。
1. 信度与效度
信度即测量的一致性,表示若问卷中的问题重复很多次问同一个人,这个人的回答总是一致的。效度是衡量问卷中的问题能否测量出它应该测量的事物的成都,例如网上的一些 IQ 测试问题真的能反映一个人的真实智力吗?这个就属于效度要衡量的东西。
信度用克隆巴赫系数 Cronbach’s alpha 检验,而效度是一些列指标:
效度类型 | 解释 | 测量方法 |
---|---|---|
内容效度(Content Validity) | 题目是否能全面覆盖测量的概念 | 专家评审、内容分析 |
结构效度(Construct Validity) | 题目是否能测量理论上的潜变量 | 因子分析(EFA & CFA) |
聚合效度(Convergent Validity) | 相同概念的题目是否高度相关 | AVE(平均方差提取)、因子载荷 |
区分效度(Discriminant Validity) | 不同概念的题目是否可以区分 | 相关性分析(Fornell-Larcker、HTMT) |
准则效度或效标效度(Criterion Validity) | 题目是否与外部标准变量相关 | 相关分析、回归分析 |
预测效度(Predictive Validity) | 题目是否能预测未来行为 | 纵向研究、回归分析 |
具体的测量方法和指标包括:
效度类型 | 测量方法 | 标准 |
---|---|---|
内容效度 | 专家评审、CVI | CVI > 0.8 |
结构效度 | EFA, CFA | CFI > 0.9, RMSEA < 0.08 |
聚合效度 | AVE, 因子载荷 | AVE > 0.5 |
区分效度 | Fornell-Larcker, HTMT | HTMT < 0.9 |
准则或效标效度 | 相关分析、回归分析 | 相关系数 r > 0.5 |
如果问卷在多个效度检验中都达标,那么它是有效的,
在结构方程、因子分析中一般要检测信度与效度。
2. 到底检测哪几个效度
在论文中是否需要检验所有效度指标,取决于研究目标、数据类型、学科规范以及期刊要求。以下是具体建议和取舍原则:
2.1. 必须检验的效度(核心)
(1) 内容效度(Content Validity)
- 适用场景:所有使用自编量表或改编量表的研究。
- 必要性:确保题目覆盖目标构念,避免测量偏差。
- 如何做:
- 专家评审(至少3位领域专家评估题项相关性)。
- 预调研(小样本受访者反馈,修正模糊表述)。
(2) 结构效度(Construct Validity)
- 适用场景:涉及潜变量(如态度、感知)的定量研究。
- 必要性:验证量表维度划分是否合理。
- 选择EFA或CFA:
- EFA:探索性研究(无明确理论结构时)。
- CFA:验证性研究(已有理论支持时)。
(3) 聚敛效度(Convergent Validity)
- 适用场景:使用多题项测量同一构念的研究(SEM或因子分析)。
- 必要性:证明题项确实属于预设的潜变量。
- 关键指标:AVE > 0.5,CR > 0.7。
2. 按需检验的效度(视情况选择)**
(1) 区分效度(Discriminant Validity)
- 适用场景:研究涉及多个相关但理论上不同的构念(如“品牌形象”vs.“品牌忠诚”)。
- 何时可省略:
- 构念间理论区分明确,且EFA/CFA已显示清晰因子结构。
- 单维度量表研究。
(2) 效标效度(Criterion Validity)
- 适用场景:需要证明量表能预测实际行为或外部标准(如“购买意愿”预测“实际购买”)。
- 何时可省略:
- 研究仅关注理论关系(如中介/调节效应),不涉及预测。
- 缺乏外部效标数据(如无法追踪实际行为)。
(3) 交叉效度(Cross-Validity)
- 适用场景:量表开发或需要在不同群体中验证普适性。
- 何时可省略:
- 使用成熟量表且样本同质性高(如仅调查大学生群体)。
3. 不需要检验的情况
-
使用成熟量表:
- 若引用已被广泛验证的量表(如“大五人格量表”),可仅报告信度(Cronbach’s α),无需重复效度检验,但需注明来源。
- 例:
“采用Rieh(2004)开发的‘信息可信度量表’,本研究中Cronbach’s α=0.89。”
-
单一题项测量:
- 如直接用“您是否愿意购买此产品?(1-5分)”测量购买意愿,无需效度检验(但需说明简化理由)。
-
纯二手数据研究:
- 若分析企业销售数据、社交媒体指标等客观数据,无需效度检验。
4. 学科差异示例
学科 | 重点效度 | 常见省略项 |
---|---|---|
心理学 | 结构效度、聚敛效度、区分效度 | 效标效度(若理论驱动) |
市场营销 | 内容效度、效标效度(预测购买) | 交叉效度 |
教育学 | 内容效度、结构效度 | HTMT(若构念区分明显) |
管理学(二手数据) | — | 无需效度检验 |
5. 论文写作中的表述建议
-
简化报告:若空间有限,优先报告核心效度(内容效度、CFA拟合指标、AVE/CR),其余放在附录。
-
示例写法:
“通过验证性因子分析(CFI=0.93, RMSEA=0.06)和聚敛效度检验(AVE=0.52-0.68, CR=0.81-0.89)证实量表效度,区分效度满足Fornell-Larcker准则(见表3)。”
-
避坑提示:
- 若EFA和CFA结果冲突,需解释原因(如文化差异导致因子结构变化)。
- 效度检验不达标时,应讨论局限性(如“AVE略低于0.5,可能与题项数量少有关”)。
总结:效度检验的取舍原则
- 基础必做:内容效度 (CVI) + 结构效度(EFA/CFA) + 聚敛效度(AVE/CR)。
- 按需补充:区分效度(多构念研究)、效标效度(例如:Pearson相关系数 r)。
- 可省略:成熟量表、客观数据、明确的理论区分。
3. 计算公式
信度的标准定义为真值方差与测量值的方差之比,在 τ \tau τ等价时也等于真值与测量值相关系数的平方。 定义 k k k 个测量值的和为 X = x 1 + x 2 + . . . x k X=x_1+x_2+...x_k X=x1+x2+...xk,克隆巴赫系数 Cronbach’s alpha 定义为 X X X 与真值 τ \tau τ 的相关系数平方,并且可以进一步推出它的计算公式为:
ρ τ = k k − 1 [ 1 − ∑ i = 1 k v a r ( x i ) v a r ( X ) ] \rho_{\tau}=\frac{k}{k-1}\left[1-\frac{\sum_{i=1}^{k} var (x_i)}{var(X)}\right] ρτ=k−1k[1−var(X)∑i=1kvar(xi)]
v a r ( X ) var(X) var(X) 为所有测量值和的方差(就是问卷中所有问题加和的方差), v a r ( x i ) var(x_i) var(xi) 为每个测量值的方差(就是问卷中单个问题的方差)。
4. R, python 实现
4.1 R实现
在 R 语言中需要安装 ltm 包,该包专门针对结构方程相关的计算。
#install.packages('ltm')
library(ltm)
data = data.frame(Q1=c(1, 2, 2, 3, 2, 2, 3, 3, 2, 3),
Q2=c(1, 1, 1, 2, 3, 3, 2, 3, 3, 3),
Q3=c(1, 1, 2, 1, 2, 3, 3, 3, 2, 3))
#calculate Cronbach's Alpha
cronbach.alpha(data, CI=TRUE)
显示结果:
Items: 3
Sample units: 10
alpha: 0.773
Bootstrap 95% CI based on 1000 samples
2.5% 97.5%
0.064 0.933
上面还显示了 Cronbach’s 系数的 Bootstrap 置信区间。
4.2 Python 实现
Python 代码:
python 需要安装 pingouin 包,
import pandas as pd
import pingouin as pg
#enter survey responses as a DataFrame
df = pd.DataFrame({'Q1': [1, 2, 2, 3, 2, 2, 3, 3, 2, 3],
'Q2': [1, 1, 1, 2, 3, 3, 2, 3, 3, 3],
'Q3': [1, 1, 2, 1, 2, 3, 3, 3, 2, 3]})
result = pg.cronbach_alpha(data = df)
print(result)
显示结果:
(0.7734375, array([0.336, 0.939]))
python 得出的系数值与 R 语言一样,但是置信区间有点不一样,因为 python 是用固定的置信区间公式算出的,不是用 bootstrap 方法计算的置信区间。