几乎必然收敛 (almost surely convergence)

在随机规划的书籍或论文中,时常能见到 almost surely convergence (几乎必然收敛)这个名词。在这篇博客里,我总结整理一下这个名词的相关知识点。

这篇博文基于维基百科的条目 almost surely 以及国外一本概率教材的 线上资料.

1. almost surely

几乎必然,是概率论或测度论里面经常能看到的一个专业词汇。

如果一个事件发生的概率为 1,在概率论或测度论中我们说这个事件几乎必然(almost surely)发生。

刚开始有点不好理解,为什么要加一个几乎必然,因为这完全基于概率来描述一个事件是否发生。举例:

  • 将一个硬币抛无限次,至少出现一个正面这个事件几乎必然发生。因为 P { 至少出现一个正面 } = lim ⁡ n → ∞ 1 − ( 1 2 ) n = 1 P\{至少出现一个正面\}=\lim\limits_{n\rightarrow \infty}1-(\frac{1}{2})^n=1 P{至少出现一个正面}=nlim1(21)n=1
  • 假设我们排队等待的时间符合指数分布,那么等待时间小于某个时间我们可以根据指数分布得到一个概率。然而,由于指数分布为连续分布,等待时间恰好为某个时间的概率为 0。因此,排队等待时间为 1 分钟这样的事件几乎必然不发生。(从实际角度看,排队等待时间刚好为 1 分钟是可能的,但是由于假设等待时间为指数分布,从概率角度上讲,等待时间刚好为 1 分钟的概率为 0)

2. almost surely convergence

随机规划算法的收敛性一般都说 almost surely convergence, 简称 a . s . a.s. a.s., 定义:

一系列随机变量 X 1 , X 2 , … , X_1,X_2,\dots, X1,X2,, 几乎必然收敛于随机变量 X X X,表示为 X n → a . s . X X_n \xrightarrow{a.s.} X Xna.s. X,如果当 n n n 趋于无穷大时,随机变量 X n X_n Xn X X X 相等的概率为 1, 即

P { lim ⁡ n → ∞ X n = X } = 1 P\{\lim\limits_{n\rightarrow \infty} X_n=X\}=1 P{nlimXn=X}=1

  • 两个随机变量相等,意味着这两个随机变量所有可能取值的概率都相等

在测度论中,任何一个随机变量都有一个样本空间 S = { s 1 , s 2 , …   } S=\{s_1,s_2,\dots\} S={s1,s2,}随机变量可以视作样本空间的函数, 例如随机变量 X n X_n Xn 在样本为 s i s_i si 时取值为 x n i x_{ni} xni,可以表示为
X n ( s i ) = x n i X_n(s_i)=x_{ni} Xn(si)=xni

举例:抛一次硬币可能有正面(H)、反面(T)两个结果,样本空间为 { H , T } \{H, T\} {H,T},一个随机变量 X n X_n Xn 可以定义为:

X n ( s ) = { 1 n + 1 if  s = H 1 if  s ≠ H X_n(s)=\begin{cases} \frac{1}{n+1}\quad &\text{if }{s=H}\\ 1 &\text{if }{s\neq H} \end{cases} Xn(s)={n+111if s=Hif s=H

2.1 一个例子

一个样本空间 S = [ 0 , 1 ] S=[0,1] S=[0,1],并且样本在 0 到 1 之间均匀分布,定义一个随机变量序列 { X n , n = 1 , 2 , …   } \{X_n,n=1,2,\dots\} {Xn,n=1,2,}:
X n ( s ) = { 1 0 ≤ s < n + 1 2 n 0 otherwise X_n(s)=\begin{cases} 1\quad &0\leq s<\frac{n+1}{2n}\\ 0 & \text{otherwise} \end{cases} Xn(s)={100s<2nn+1otherwise

定义另外一个随机变量 X X X:
. X ( s ) = { 1 0 ≤ s < 1 2 0 otherwise X(s)=\begin{cases} 1\quad &0\leq s<\frac{1}{2}\\ 0 & \text{otherwise} \end{cases} X(s)={100s<21otherwise

求证 lim ⁡ X n → a . s . X \lim X_n\xrightarrow{a.s.} X limXna.s. X.

根据定义证明。
证明:

我们需要证明 P { lim ⁡ n → ∞ X n = X } = 1 P\{\lim\limits_{n\rightarrow\infty}X_n=X\}=1 P{nlimXn=X}=1.

显然,当 s > 1 / 2 s> 1/2 s>1/2 时, X n = X = 0 X_n=X=0 Xn=X=0;
0 ≤ s < 1 / 2 0\leq s<1/2 0s<1/2 时, n → ∞ n\rightarrow \infty n 情况下, n + 1 2 n → 1 2 \frac{n+1}{2n}\rightarrow \frac{1}{2} 2nn+121,因此, X n = X = 1 X_n=X=1 Xn=X=1;
s = 1 / 2 s= 1/2 s=1/2 时, lim ⁡ n → ∞ X n ( 1 / 2 ) = 1 , X ( 1 / 2 ) = 0 \lim\limits_{n\rightarrow \infty}X_n(1/2)=1, X(1/2)=0 nlimXn(1/2)=1,X(1/2)=0, 因此 X n ≠ X X_n\neq X Xn=X;

结合以上两种情况, P { lim ⁡ n → ∞ X n = X } = P { s ∈ [ 0 , 1 / 2 ) ∪ ( 1 / 2 , 1 ] } = 1 / 2 + 1 / 2 = 1 P\{\lim\limits_{n\rightarrow\infty}X_n=X\}=P\{s\in[0,1/2)\cup(1/2, 1]\}=1/2+1/2=1 P{nlimXn=X}=P{s[0,1/2)(1/2,1]}=1/2+1/2=1.

2.2 定理1

对于一系列随机变量 X 1 , X 2 , … X_1, X_2,\dots X1,X2,, 对于任意 ϵ > 0 \epsilon>0 ϵ>0, 都有
∑ n = 1 ∞ P ( ∣ X n − X ∣ > ϵ ) < ∞ , \sum\limits_{n=1}^\infty P(|X_n-X|>\epsilon)<\infty, n=1P(XnX>ϵ)<,
那么 X n → a . s . X X_n\xrightarrow{a.s.} X Xna.s. X.

这个定理是判断几乎必然收敛的充分条件。

2.3 定理2

对于一系列随机变量 X 1 , X 2 , … X_1, X_2,\dots X1,X2,, 对于任意 ϵ > 0 \epsilon>0 ϵ>0, 定义一个新的事件
A m = { ∣ X n − X ∣ < ϵ } , for all  n ≥ m A_m=\{|X_n-X|<\epsilon\},\quad\text{for all } n\geq m Am={XnX<ϵ},for all nm
那么 X n → a . s . X X_n\xrightarrow{a.s.} X Xna.s. X 当且仅当 lim ⁡ m → ∞ P ( A m ) = 1 \lim\limits_{m\rightarrow \infty}P(A_m)=1 mlimP(Am)=1.

该定理为充分必要条件。

  • 看到一些论文证明一些随机规划算法的几乎必然收敛性,还是挺有难度的,一般还会用到高级概率论中的其他定理或性质
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心态与习惯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值