图像的小波变换

小波变换原理  

  所谓的小波的小是针对傅里叶波而言,傅里叶波指的是在时域空间无穷震荡的正弦(或余弦波)。

  相对而言,小波指的是一种能量在时域非常集中的波,它的能量有限,都集中在某一点附近,而且积分的值为零,这说明它与傅里叶波一样是正交波。

  举一些小波的例子:


可以看到,能量集中在x轴0值附近,以y轴的0值为基线,上下两个区域的波形面积相等。


  众所周知,图像的傅里叶变换是将图像信号分解为各种不同频率的正弦波。同样,小波变换是将图像信号分解为由原始小波位移和缩放之后的一组小波。

  小波在图像处理里被称为图像显微镜,原因在于它的多分辨率分解能力可以将图片信息一层一层分解剥离开来。剥离的手段就是通过低通和高通滤波器,

这里我们以一个图像的横向一维为例,讲讲小波的分解与还原,采用的是Haar小波做分解:

图像原始像素矩阵:[6 4 8 7 5 9 3 2]

分解低通滤波器:[ 1  1]/sqrt(2)

分解高通滤波器:[-1 1]/sqrt(2)

1.用低通滤波器与原始像素矩阵做卷积得:[8 10 12 15 12 14 12 5]/sqrt(2)

下采样得:[10 15 14 5]/sqrt(2)    ----->L

2.用高通滤波器与原始像素矩阵做卷积得:[-4 2 -4 1 2 -4 6 1]/sqrt(2)

下采样得:[2 1 -4 1]/sqrt(2)    ----->H

上例为一维情况,二维情况在做完横向滤波之后再进行纵向滤波即可。


逆变换过程:

重构低通滤波器:[1  1]/sqrt(2)

重构高通滤波器:[1 -1]/sqrt(2)

1.对L数组插值得:[0 10 0 15 0 14 0 5]/sqrt(2)

再用低通滤波器做卷积得:[10 10 15 15 14 14 5 5]/2

2.对H数组插值得:[0 2 0 1 0 -4 0 1]/sqrt(2)

再用高通滤波器做卷积得:[2 -2 1 -1 -4 4 1 -1]/2

两个数组求和得:[6 4 8 7 5 9 3 2] ,矩阵被还原了。


基于小波变换的图像压缩

我们知道,图像的低频部分保存的是图像的轮廓信息,而高频保存的是图像的边缘和细节信息,大量的研究表明,幅值低的高频信息对于图像共享较小,

丢弃对图像质量的影响不大,所以小波变换的特性给了图像压缩一个很好的工具,将原图进行小波分解以后,为高频信息设置一个阈值a,假如该点的值小于a则置零这样就抛弃掉了图像中影响不大的低幅值高频信息,还原出来的图像没有明显的质量下降,但是占用空间却变小了。

给一个别人论文里的示例和统计:


效果:


评论 2 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

Robin_Chien

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值