图像小波变换的matlab实现

3. 图像小波变换的 Matlab 实现

3.1 一维小波变换的 Matlab 实现
(1) dwt 函数
功能:一维离散小波变换
格式:[cA,cD]=dwt(X,'wname')
         [cA,cD]=dwt(X,Lo_D,Hi_D)
说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname' 对信号 X 进行分解,cA、cD 分别为近似分量和细节分量;[cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。
(2) idwt 函数
功能:一维离散小波反变换
格式:X=idwt(cA,cD,'wname')
         X=idwt(cA,cD,Lo_R,Hi_R)
         X=idwt(cA,cD,'wname',L)
         X=idwt(cA,cD,Lo_R,Hi_R,L)
说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。
         'wname' 为所选的小波函数
         X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。
         X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。

3.2 二维小波变换的 Matlab 实现

           二维小波变换的函数
-------------------------------------------------
     函数名                 函数功能
---------------------------------------------------
     dwt2             二维离散小波变换
   wavedec2       二维信号的多层小波分解
     idwt2           二维离散小波反变换
   waverec2         二维信号的多层小波重构
   wrcoef2           由多层小波分解重构某一层的分解信号
   upcoef2           由多层小波分解重构近似分量或细节分量
   detcoef2         提取二维信号小波分解的细节分量
   appcoef2         提取二维信号小波分解的近似分量
   upwlev2         二维小波分解的单层重构
   dwtpet2         二维周期小波变换
   idwtper2         二维周期小波反变换
-------------------------------------------------------------

(1) wcodemat 函数
功能:对数据矩阵进行伪彩色编码
格式:Y=wcodemat(X,NB,OPT,ABSOL)
         Y=wcodemat(X,NB,OPT)
         Y=wcodemat(X,NB)
         Y=wcodemat(X)
说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16;
       OPT 指定了编码的方式(缺省值为 'mat'),即:
                 OPT='row' ,按行编码
                 OPT='col' ,按列编码
                 OPT='mat' ,按整个矩阵编码
       ABSOL 是函数的控制参数(缺省值为 '1'),即:
                 ABSOL=0 时,返回编码矩阵
                 ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)

(2) dwt2 函数
功能:二维离散小波变换
格式:[cA,cH,cV,cD]=dwt2(X,'wname')
         [cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)
说明:[cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数 'wname' 对二维信号 X 进行二维离散小波变幻;cA,cH,cV,cD 分别为近似分量、水平细节分量、垂直细节分量和对角细节分量;[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。

(3) wavedec2 函数
功能:二维信号的多层小波分解
格式:[C,S]=wavedec2(X,N,'wname')
         [C,S]=wavedec2(X,N,Lo_D,Hi_D)
说明:[C,S]=wavedec2(X,N,'wname') 使用小波基函数 'wname' 对二维信号 X 进行 N 层分解;[C,S]=wavedec2(X,N,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。

(4) idwt2 函数
功能:二维离散小波反变换
格式:X=idwt2(cA,cH,cV,cD,'wname')
         X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R)
         X=idwt2(cA,cH,cV,cD,'wname',S)
         X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)
说明:X=idwt2(cA,cH,cV,cD,'wname') 由信号小波分解的近似信号 cA 和细节信号 cH、cH、cV、cD 经小波反变换重构原信号 X ;X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R) 使用指定的重构低通和高通滤波器 Lo_R 和 Hi_R 重构原信号 X ;X=idwt2(cA,cH,cV,cD,'wname',S) 和 X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S) 返回中心附近的 S 个数据点。

(5) waverec2 函数
说明:二维信号的多层小波重构
格式:X=waverec2(C,S,'wname')
         X=waverec2(C,S,Lo_R,Hi_R)
说明:X=waverec2(C,S,'wname') 由多层二维小波分解的结果 C、S 重构原始信号 X ,'wname' 为使用的小波基函数;X=waverec2(C,S,Lo_R,Hi_R) 使用重构低通和高通滤波器 Lo_R 和 Hi_R 重构原信号。
图像处理工具箱1. 图像和图像数据
   缺省情况下,MATLAB将图像中的数据存储为双精度类型(double),64位浮点
数,所需存储量很大;MATLAB还支持另一种类型无符号整型(uint8),即图像矩
阵中每个数据占用1个字节。
   在使用MATLAB工具箱时,一定要注意函数所要求的参数类型。另外,uint8
与double两种类型数据的值域不同,编程需注意值域转换。
           从uint8到double的转换
   ---------------------------------------------
       图像类型         MATLAB语句
   ---------------------------------------------
     索引色             B=double(A)+1
     索引色或真彩色 B=double(A)/255
     二值图像           B=double(A)
   ---------------------------------------------

         从double到uint8的转换
   ---------------------------------------------
       图像类型         MATLAB语句
   ---------------------------------------------
     索引色               B=uint8(round(A-1))
     索引色或真彩色     B=uint8(round(A*255))
     二值图像             B=logical(uint8(round(A)))
   ---------------------------------------------

2. 图像处理工具箱所支持的图像类型

2.1 真彩色图像
     R、G、B三个分量表示一个像素的颜色。如果要读取图像中(100,50)处的像素值,
可查看三元数据(100,50,1:3)。
     真彩色图像可用双精度存储,亮度值范围是[0,1];比较符合习惯的存储方法是用无
符号整型存储,亮度值范围[0,255]
  
2.2 索引色图像
   包含两个结构,一个是调色板,另一个是图像数据矩阵。调色板是一个有3列和若干行
的色彩映象矩阵,矩阵每行代表一种颜色,3列分别代表红、绿、蓝色强度的双精度数。
  
   注意:MATLAB中调色板色彩强度[0,1],0代表最暗,1代表最亮。
           常用颜色的RGB值
   --------------------------------------------
     颜色     R   G   B       颜色     R   G   B
   --------------------------------------------
     黑     0   0   1       洋红     1   0   1
     白     1   1   1       青蓝     0   1   1
     红     1   0   0       天蓝 0.67 0   1
     绿     0   1   0       橘黄     1 0.5 0
     蓝     0   0   1       深红   0.5 0   0
     黄     1   1   0       灰     0.5 0.5 0.5      
   --------------------------------------------
         产生标准调色板的函数
   -------------------------------------------------
     函数名       调色板
   -------------------------------------------------
     Hsv       色彩饱和度,以红色开始,并以红色结束
     Hot       黑色-红色-黄色-白色
     Cool       青蓝和洋红的色度
     Pink       粉红的色度
     Gray       线型灰度
     Bone       带蓝色的灰度
     Jet         Hsv的一种变形,以蓝色开始,以蓝色结束
     Copper     线型铜色度
     Prim       三棱镜,交替为红、橘黄、黄、绿和天蓝
     Flag       交替为红、白、蓝和黑
--------------------------------------------------
   缺省情况下,调用上述函数灰产生一个64×3的调色板,用户也可指定调色板大小。
  
   索引色图像数据也有double和uint8两种类型。
   当图像数据为double类型时,值1代表调色板中的第1行,值2代表第2行……
   如果图像数据为uint8类型,0代表调色板的第一行,,值1代表第2行……

2.3 灰度图像
   存储灰度图像只需要一个数据矩阵。
   数据类型可以是double,[0,1];也可以是uint8,[0,255]

2.4 二值图像
   二值图像只需一个数据矩阵,每个像素只有两个灰度值,可以采用uint8或double类型存储。
   MATLAB工具箱中以二值图像作为返回结果的函数都使用uint8类型。

2.5 图像序列
   MATLAB工具箱支持将多帧图像连接成图像序列。
   图像序列是一个4维数组,图像帧的序号在图像的长、宽、颜色深度之后构成第4维。
   分散的图像也可以合并成图像序列,前提是各图像尺寸必须相同,若是索引色图像,
调色板也必须相同。
   可参考cat()函数     A=cat(4,A1,A2,A3,A4,A5)

3. MATLAB图像类型转换
         图像类型转换函数
   ---------------------------------------------------------------------------
     函数名                       函数功能
   ---------------------------------------------------------------------------
     dither       图像抖动,将灰度图变成二值图,或将真彩色图像抖动成索引色图像
     gray2ind     将灰度图像转换成索引图像
     grayslice     通过设定阈值将灰度图像转换成索引色图像
     im2bw       通过设定亮度阈值将真彩色、索引色、灰度图转换成二值图
     ind2gray     将索引色图像转换成灰度图像
     ind2rgb       将索引色图像转换成真彩色图像
     mat2gray   将一个数据矩阵转换成一副灰度图
     rgb2gray     将一副真彩色图像转换成灰度图像
     rgb2ind       将真彩色图像转换成索引色图像
   ----------------------------------------------------------------------------

4. 图像文件的读写和查询

4.1 图形图像文件的读取
   利用函数imread()可完成图形图像文件的读取,语法:

     A=imread(filename,fmt)
     [X,map]=imread(filename,fmt)
     [...]=imread(filename)
     [...]=imread(filename,idx) (只对TIF格式的文件)
     [...]=imread(filename,ref) (只对HDF格式的文件)

   通常,读取的大多数图像均为8bit,当这些图像加载到内存中时,Matlab就将其存放
在类uint8中。此为Matlab还支持16bit的PNG和TIF图像,当读取这类文件时,Matlab就将
其存贮在uint16中。

   注意:对于索引图像,即使图像阵列的本身为类uint8或类uint16,imread函数仍将
颜色映象表读取并存贮到一个双精度的浮点类型的阵列中。

4.2 图形图像文件的写入
   使用imwrite函数,语法如下:

   imwrite(A,filename,fmt)
   imwrite(X,map,filename,fmt)
   imwrite(...,filename)
   imwrite(...,parameter,value)

   当利用imwrite函数保存图像时,Matlab缺省的方式是将其简化道uint8的数据格式。

4.3 图形图像文件信息的查询   imfinfo()函数

5. 图像文件的显示

5.1 索引图像及其显示

   方法一:
           image(X)
           colormap(map)

   方法二:
           imshow(X,map)

5.2 灰度图像及其显示
   Matlab 7.0 中,要显示一副灰度图像,可以调用函数 imshow 或 imagesc (即
imagescale,图像缩放函数)

   (1) imshow 函数显示灰度图像
     使用 imshow(I)     或 使用明确指定的灰度级书目:imshow(I,32)
   
     由于Matlab自动对灰度图像进行标度以适合调色板的范围,因而可以使用自定义
大小的调色板。其调用格式如下:
           imshow(I,[low,high])
     其中,low 和 high 分别为数据数组的最小值和最大值。

   (2) imagesc 函数显示灰度图像
   下面的代码是具有两个输入参数的 imagesc 函数显示一副灰度图像
       imagesc(1,[0,1]);
       colormap(gray);
     imagesc 函数中的第二个参数确定灰度范围。灰度范围中的第一个值(通常是0),
对应于颜色映象表中的第一个值(颜色),第二个值(通常是1)则对应与颜色映象表
中的最后一个值(颜色)。灰度范围中间的值则线型对应与颜色映象表中剩余的值(颜色)。

     在调用 imagesc 函数时,若只使用一个参数,可以用任意灰度范围显示图像。在该
调用方式下,数据矩阵中的最小值对应于颜色映象表中的第一个颜色值,数据矩阵中的最大
值对应于颜色映象表中的最后一个颜色值。

5.3 RGB 图像及其显示
   (1) image(RGB)
   不管RGB图像的类型是double浮点型,还是 uint8 或 uint16 无符号整数型,Matlab都
能通过 image 函数将其正确显示出来。

   RGB8 = uint8(round(RGB64×255)); % 将 double 浮点型转换为 uint8 无符号整型
   RGB64 = double(RGB8)/255;             % 将 uint8 无符号整型转换为 double 浮点型
   RGB16 = uint16(round(RGB64×65535)); % 将 double 浮点型转换为 uint16 无符号整型
   RGB64 = double(RGB16)/65535;       % 将 uint16 无符号整型转换为 double 浮点型

   (2) imshow(RGB) 参数是一个 m×n×3 的数组

5.4 二进制图像及其显示

   (1) imshow(BW)
   在 Matlab 7.0 中,二进制图像是一个逻辑类,仅包括 0 和 1 两个数值。像素 0 显示
为黑色,像素 1 显示为白色。
   显示时,也可通过NOT(~)命令,对二进制图象进行取反,使数值 0 显示为白色;1 显示
为黑色。
   例如: imshow(~BW)

   (2) 此外,还可以使用一个调色板显示一副二进制图像。如果图形是 uint8 数据类型,
则数值 0 显示为调色板的第一个颜色,数值 1 显示为第二个颜色。
   例如: imshow(BW,[1 0 0;0 0 1])  

5.5 直接从磁盘显示图像
   可使用一下命令直接进行图像文件的显示:
         imshow filename
   其中,filename 为要显示的图像文件的文件名。

   如果图像是多帧的,那么 imshow 将仅显示第一帧。但需注意,在使用这种方式时,图像
数据没有保存在Matlab 7.0 工作平台。如果希望将图像装入工作台中,需使用 getimage 函
数,从当前的句柄图形图像对象中获取图像数据,
   命令形式为: rgb = getimage;
小波变换图像处理%MATLAB2维小波变换经典程序 % FWT_DB.M; % 此示意程序用DWT实现二维小波变换 % 编程时间2004-4-10,编程人沙威 %%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%% clear; clc; T=256; % 图像维数 SUB_T=T/2; % 子图维数 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 1.调原始图像矩阵 load wbarb; % 下载图像 f=X; % 原始图像 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 2.进行二维小波分解 l=wfilters('db10','l'); % db10(消失矩为10)低通分解滤波器冲击响应(长度为20) L=T-length(l); l_zeros=[l,zeros(1,L)]; % 矩阵行数与输入图像一致,为2的整数幂 h=wfilters('db10','h'); % db10(消失矩为10)高通分解滤波器冲击响应(长度为20) h_zeros=[h,zeros(1,L)]; % 矩阵行数与输入图像一致,为2的整数幂 for i=1:T; % 列变换 row(1:SUB_T,i)=dyaddown( ifft( fft(l_zeros).*fft(f(:,i)') ) ).'; % 圆周卷积FFT row(SUB_T+1:T,i)=dyaddown( ifft( fft(h_zeros).*fft(f(:,i)') ) ).'; % 圆周卷积FFT end; for j=1:T; % 行变换 line(j,1:SUB_T)=dyaddown( ifft( fft(l_zeros).*fft(row(j,:)) ) ); % 圆周卷积FFT line(j,SUB_T+1:T)=dyaddown( ifft( fft(h_zeros).*fft(row(j,:)) ) ); % 圆周卷积FFT end; decompose_pic=line; % 分解矩阵 % 图像分为四块 lt_pic=decompose_pic(1:SUB_T,1:SUB_T); % 在矩阵左上方为低频分量--fi(x)*fi(y) rt_pic=decompose_pic(1:SUB_T,SUB_T+1:T); % 矩阵右上为--fi(x)*psi(y) lb_pic=decompose_pic(SUB_T+1:T,1:SUB_T); % 矩阵左下为--psi(x)*fi(y) rb_pic=decompose_pic(SUB_T+1:T,SUB_T+1:T); % 右下方为高频分量--psi(x)*psi(y) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 3.分解结果显示 figure(1); colormap(map); subplot(2,1,1); image(f); % 原始图像 title('original pic'); subplot(2,1,2); image(abs(decompose_pic)); % 分解后图像 title('decomposed pic'); figure(2); colormap(map); subplot(2,2,1); image(abs(lt_pic)); % 左上方为低频分量--fi(x)*fi(y) title('\Phi(x)*\Phi(y)'); subplot(2,2,2); image(abs(rt_pic)); % 矩阵右上为--fi(x)*psi(y) title('\Phi(x)*\Psi(y)'); subplot(2,2,3); image(abs(lb_pic)); % 矩阵左下为--psi(x)*fi(y) title('\Psi(x)*\Phi(y)'); subplot(2,2,4); image(abs(rb_pic)); % 右下方为高频分量--psi(x)*psi(y) title('\Psi(x)*\Psi(y)'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 5.重构源图像及结果显示 % construct_pic=decompose_matrix'*decompose_pic*decompose_matrix; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% l_re=l_zeros(end:-1:1); % 重构低通滤波 l_r=circshift(l_re',1)'; % 位置调整 h_re=h_zeros(end:-1:1); % 重构高通滤波 h_r=circshift(h_re',1)'; % 位置调整 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% top_pic=[lt_pic,rt_pic]; % 图像上半部分 t=0; for i=1:T; % 行插值低频 if (mod(i,2)==0) topll(i,:)=top_pic(t,:); % 偶数行保持 else t=t+1; topll(i,:)=zeros(1,T); % 奇数行为零 end end; for i=1:T; % 列变换 topcl_re(:,i)=ifft( fft(l_r).*fft(topll(:,i)') )'; % 圆周卷积FFT end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bottom_pic=[lb_pic,rb_pic]; % 图像下半部分 t=0; for i=1:T; % 行插值高频 if (mod(i,2)==0) bottomlh(i,:)=bottom_pic(t,:); % 偶数行保持 else bottomlh(i,:)=zeros(1,T); % 奇数行为零 t=t+1; end end; for i=1:T; % 列变换 bottomch_re(:,i)=ifft( fft(h_r).*fft(bottomlh(:,i)') )'; % 圆周卷积FFT end; construct1=bottomch_re+topcl_re; % 列变换重构完毕 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% left_pic=construct1(:,1:SUB_T); % 图像左半部分 t=0; for i=1:T; % 列插值低频 if (mod(i,2)==0) leftll(:,i)=left_pic(:,t); % 偶数列保持 else t=t+1; leftll(:,i)=zeros(T,1); % 奇数列为零 end end; for i=1:T; % 行变换 leftcl_re(i,:)=ifft( fft(l_r).*fft(leftll(i,:)) ); % 圆周卷积FFT end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% right_pic=construct1(:,SUB_T+1:T); % 图像右半部分 t=0; for i=1:T; % 列插值高频 if (mod(i,2)==0) rightlh(:,i)=right_pic(:,t); % 偶数列保持 else rightlh(:,i)=zeros(T,1); % 奇数列为零 t=t+1; end end; for i=1:T; % 行变换 rightch_re(i,:)=ifft( fft(h_r).*fft(rightlh(i,:)) ); % 圆周卷积FFT end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% construct_pic=rightch_re+leftcl_re; % 重建全部图像 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 结果显示 figure(3); colormap(map); subplot(2,1,1); image(f); % 源图像显示 title('original pic'); subplot(2,1,2); image(abs(construct_pic)); % 重构源图像显示 title('reconstructed pic'); error=abs(construct_pic-f); % 重构图形与原始图像误值 figure(4); mesh(error); % 误差三维图像 title('absolute error display');
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值