随着最先进扩散模型(如Midjourney、Stable Diffusion和Firefly)生成的图像具有高度的逼真度,未经训练的我们很难区分真实照片和AI生成的图像。为了解决这个问题,这份指南,帮助读者培养更批判的眼光,识别AI生成图像中经常出现的人工痕迹、不一致性和不可信之处。
根据AI生成图像中出现的人工痕迹和不合理性的五个高级类别组织了这份2024年的指南:解剖学上的不合理性、风格上的人工痕迹、功能性上的不合理性、违反物理规律和社会文化上的不合理性。然而,并非总是能够轻易地识别图像中的人工痕迹和不合理性,尤其是在肖像图像中。同样,真实的照片有时也会包含看起来不合理或像视觉人工痕迹的元素。本指南的目标是帮助你培养对视觉不一致性的敏锐眼光,并校准你对图像是否由AI生成、真实或太模糊而无法在没有进一步信息的情况下知道的直觉。
可以在阅读前,先测试一下自己的技能,测试网址如下:
你可以挑出下列图中哪两张是真实照片吗?仔细看看(答案在最后)
1 背景
1.1 AI 图像生成技术发展
- 从 GAN 到扩散模型:AI 图像生成技术经历了从 GAN 到扩散模型的演变。GAN 是最早用于生成逼真图像的模型,但扩散模型在 2024 年成为主流,能够生成更具表现力和可控性的图像。
- 扩散模型的工作原理:通过向图像添加噪声并学习逐步去除噪声来生成图像。例如 Midjourney、Stable Diffusion 和 Firefly 等平台都使用扩散模型。