ESG-AI框架:全面帮助投资者整合ESG与AI投资

关键词: ESG、人工智能、投资者框架、负责任的AI、AI风险评估

      在近年来的商业实践中,环境、社会和治理(ESG)框架已经演化为一种综合性的评估体系,旨在全面衡量企业在环境保护(如碳排放量、水资源管理)、社会责任(如员工多样性、工作环境)以及公司治理(如董事会结构、审计流程)等方面的绩效。ESG议题与人工智能(AI)技术的结合可体现在三个方面:首先,AI技术能够助力企业降低ESG相关风险,例如通过优化流程减少温室气体排放、实施监控系统提升治理效率;其次,AI的应用可以积极促进社会福祉,比如改善客户体验;最后,AI的发展需遵循负责任AI(RAI)的原则,以解决与ESG相关的伦理和运营风险。因此,将AI技术融入ESG框架,对于有效识别和管理这些风险至关重要。

    本文提出了一个综合框架ESG-AI,包括一组AI用例、10个RAI治理指标和深入评估,用于操作化高层次原则和指导方针。提出的解决方案可以作为投资界的评估工具。

框架和工具包下载地址:

https://www.csiro.au/en/research/technology-space/ai/responsible-ai/rai-esg-framework-for-investors

1 概述

1.1 ESG框架

ESG框架用于评估公司对环境可持续性、社会责任和有效治理实践的影响。

投资者越来越重视ESG因素,而不仅仅是财务指标,以评估公司的整体影响和绩效。

常见的ESG框架包括全球报告倡议标准等,但这些框架缺乏标准化指南,特别是环境方面的指标。

1.2 AI技术

AI技术在各行各业得到广泛应用,并带来新的机遇和挑战。AI可以通过以下方式与ESG框架联系起来:

  • 利用AI减少ESG风险:例如,使用AI进行排放监测、资产优化和流程自动化。
  • 使用AI产生积极影响:例如,改善客户体验和提高供应链透明度。
  • 解决RAI的担忧和风险:例如,确保AI系统的公平性、透明度和可解释性。

1.3 ESG与AI整合的挑战

  • 缺乏标准化指南,特别是环境方面的指标。
  • AI数据的多样性和复杂性。
  • 缺乏专门支持投资者决策的框架。

1.4 方法论

开发框架和工具包的方法论

  • 研究团队组建 - 展示了研究团队的组建过程,包括不同角色的成员和他们的具体职责。
  • 初步会议 - 描述了团队成员之间举行的初步会议,目的是建立共同的目标和研究问题。
  • 文献综述 - 展示了团队如何进行全面的文献审查,以识别现有最佳实践、标准和法规要求。
  • 访谈协议和问卷调查 - 展示了团队如何开发和修订问卷,以及如何选择目标行业和公司进行访谈。
  • 参与研究阶段 - 描述了与28家公司进行直接接触的过程,以及如何收集和分析数据。
  • 数据分析和见解 - 展示了团队如何分析收集的数据,识别最佳实践、公司RAI成熟度水平,并提取关键见解。
  • 框架设计 - 描述了如何利用从前期研究和参与研究阶段获得的见解来设计框架。
  • 框架开发、迭代改进和评估 - 展示了AI研究人员如何开发框架和工具包的初始版本,以及如何通过团队反馈进行迭代改进。
  • 发布和推广 - 描述了如何通过媒体、行业报告和在线平台分享完成的框架和工具包。

2 ESG-AI 框架

        ESG-AI 框架是一个综合性的评估框架,旨在帮助投资者将环境、社会和治理(ESG)因素与人工智能(AI)投资相结合。该框架由澳大利亚联邦科学与工业研究组织(CSIRO)的数据61部门与Alpha投资管理公司合作开发,旨在弥合学术界和产业界在 ESG 与 AI 集成方面的差距。

框架的三个关键组成部分:

2.1 AI 用例

帮助投资者了解不同行业中的关键 AI 应用,并评估其环境和社会影响。

AI用例分析的三个关键输入因素(监管标志、影响水平和影响范围)

2.1.1 监管标志(Regulatory flag)

指的是基于AI法规定义的AI用例的默认风险水平。例如,欧盟AI法案将AI应用分为五个风险等级:

  • 不可接受风险(Unacceptable-risk):可能显著操纵人员,针对特定弱势群体(儿童、残疾人)的漏洞,由公共当局进行的基于AI的一般社会评分。
  • 高风险(High-risk):可能对自然人的健康和安全或基本权利造成高风险(例如,生物识别技术,获得信贷评分等基本服务的访问)。
  • 中等风险(Medium-risk):不属于不可接受风险和高风险的类别,而是被分类为与人类互动的应用。
  • 低风险(Low-risk):排除了不可接受/高风险和中等风险的应用,展示了较低的潜在伤害水平。
  • 未确定(Not-determined):尚未明确评估或分类。这可能是由于信息不足、复杂性或关于用例影响或潜在风险的模糊性。

2.1.2 影响水平(Impact level)

评估AI用例对环境和社会的正面和负面影响。使用了三个环境主题和六个社会主题来评估AI用例的影响。影响水平是根据受影响主题的数量来计算的,例如:

  • 高影响(High-impact):如果N ≥ 8
  • 中等影响(Medium-impact):如果3 < N ≤ 7
  • 低影响(Low-impact):如果N ≤ 3

2.1.3 影响范围(Impact scope)

AI的影响范围可以根据AI影响的范围分为几个级别,例如公司级、行业级和系统性级。在本研究中,使用了两个级别的AI影响范围(行业和系统性)。

2.1.4 物质性计算(Materiality calculation)

使用上述三个得分(AI风险得分R、AI影响得分I和AI影响范围得分S)来计算物质性得分F。

2.1.5 最终物质性水平(Final materiality level)

  • 根据计算出的物质性得分F和预设的阈值(Thigh和Tlow),确定AI用例的物质性水平M。默认的物质性水平Mdefault根据以下规则确定:
  • 高物质性(High-material):如果F ≥ Thigh
  • 中等物质性(Medium-material):如果Tlow ≤ F < Thigh
  • 低物质性(Low-material):如果F < Tlow

2.1.6 综述

  • 分析九个行业的27个 AI 用例,涵盖从产品开发到风险管理的各个方面。
  • 评估每个用例的监管风险、环境影响、社会影响和影响范围。
  • 帮助投资者确定 AI 应用的重要性,并初步识别潜在的风险和机会。

2.2 RAI 治理指标

评估公司对负责任 AI(RAI)的承诺和问责制。

  • 包含 10 个高级指标,涵盖董事会监督、RAI 承诺、RAI 实施和 RAI 指标四个方面。
  • 通过公司参与(如访谈和调查)来评估这些指标,并提供一个高级治理评分。
  • 帮助投资者识别需要进一步评估的具体风险领域。

2.3 RAI 深度评估

对公司的 RAI 实践进行深入分析。

  • AI伦理原则(AI ethics principles):列出了8个核心的AI伦理原则,这些原则是评估RAI实践的基础。
  • 指标(Indicators):共有27个具体的指标,这些指标与AI伦理原则相关联,用于衡量公司在RAI方面的实践。
  • 子问题(Sub-questions):共有42个子问题,这些子问题是对指标的进一步细化,帮助投资者更深入地评估公司对每个伦理原则的遵循情况。
  • 度量指标(Metric):提供了43个指导度量指标,这些度量指标可以帮助投资者对公司的RAI实践进行量化评估。
  • 组织类型(Organizational type):评估可以根据不同的组织类型进行,例如AI开发者、AI购买者或两者兼有。
  • AI系统类别(AI system category):评估可以根据AI系统的不同风险等级或类别进行,例如高风险AI、基础模型等。
  • ESG主题(ESG topics):评估可以根据特定的ESG主题进行,涵盖了环境、社会和治理的多个方面。
  • 筛选支持(Filter by support):用户可以根据组织类型、AI系统类别和ESG主题对评估问题进行筛选。
  • 关键评估问题(Key assessment question):每个AI伦理原则下都有一个或多个关键评估问题,这些问题是对该原则核心概念的高层次解读。
  • 子问题的得分(Sub-score):每个子问题都会根据公司的回答或实践给出一个得分,范围从0(未披露)到5(全面且示范性披露)。
  • 最终得分(Final score):基于子问题的得分,投资者可以对公司在每个AI伦理原则下的RAI实践给出一个最终评价,评价等级分为不可接受、弱、中等和强。

3 结论

3.1 与全球和行业标准的一致性

本文的框架建立在坚实的基础之上,汲取了来自欧盟 AI 法案、美国国家标准与技术研究院 (NIST) AI 风险管理框架 (RMF) 等关键监管机构的见解和标准,以及其他行业 AI 框架。例如,深度评估包括 67% 的评估问题基于欧盟 AI 法案和 NIST 框架开发;这包括 14% 的仅 NIST 问题、24% 的仅欧盟问题和 29% 的同时包括欧盟和 NIST 的问题。

深度评估特别设计为涵盖关键 AI 系统的法律法规要求,例如高风险 AI 和基础模型。对于高风险 AI,用户可以选择 17 个强制性问题来解决法律法规要求,以及 5 个深入探讨更广泛的 AI 伦理原则的可选问题。在评估基础模型提供商时,用户可以选择 13 个强制性问题,并考虑额外的 8 个问题。这可以通过框架工具提供的过滤器实现。

通过纳入这些权威来源的要求和建议,评估与公认的法律法规和标准保持一致,确保对 AI 系统在法律、伦理和风险管理方面的全面评估。这种方法不仅有助于投资者了解合规性,还确保了对 AI 部署相关挑战的全面和全面的评估。

3.2 与 ESG 的一致性

框架将评估问题映射到 ESG 考虑因素,从而可以对公司如何将 RAI 实践与更广泛的可持续发展目标和伦理原则保持一致进行全面的评估。

上表展示了 RAI 原则和 ESG 主题之间的关系,这是通过对评估问题及其与 ESG 主题的链接进行分析而得出的。

该表清楚地表明,透明度与社会方面(劳动和客户管理)以及治理方面的披露和报告密切相关。同样,隐私和安全原则与数据隐私和网络安全紧密相关,这表明它们之间存在着大量的重叠。然而,问责制原则主要与 ESG 中的治理主题相关,但很少与其他 ESG 主题相关联。以人为本的价值和公平原则与社会主题相关联,因为这些原则侧重于与多样性、公平和包容以及人权等相似领域。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值