SIR疾病传播模型的简单数学原理

更多专业的人工智能相关文章,微信搜索  : robot-learner , 或扫码

 

 

在流行疾病传播领域有一个经典的简单模型, SIR, 或者 Susceptible Infected Recovered Model。当然这个模型可以运用各种类似的信息传播领域,比如新闻舆情传播领域。

 

这个模型其实非常简单,易于理解。我们用这样一个场景来说明:

 

假设池子里面有一堆海洋球(或者台球),球的正常颜色都是白色,假设数量为100万个。某一天,有10个球不小心掉进了颜料缸,变成了红色。虽然马上擦拭一下了一下,只有5个球的颜色被复原,还是有5个球的颜色为红色。 这个场景可以理解为疾病流行的初始状况。总人口有S=100万,一开始10个人生病,其中R=5个人很快恢复。还有I=5个人一开始没有马上康复,并且具有传染性。

 

疾病的传播在于人和人之间有接触,有相互作用,是一个复杂的网络传播行为。要想很好的用数学方式去模拟不是一个容易的事情。但是在SIR模型,这个相互作用可以大大简化。

1.

我们可以把传播方式想象成为成千上万的海洋球的随机碰撞,这个碰撞按天来看,每天都会有这样的碰撞。任何一个白球和任何一个涂了红色颜料的红球碰撞之后,有一个概率,白色的球也会染成红色,从而变成红球和具有传染性。 可以想象一下,第一天,S=100万白球和I=5个红球,总共有5x100万=500万次潜在的碰撞。假设每一次碰撞被染色的概率是 β,那么500万碰撞后会有500β万个白球被马上染成红色。从而正常的白色球数量会减少,变成:

 

          

 

 

其中 S0 为初始的正常颜色白球, I0为红色的具有传染性的红球,β为每一个红球和每一个白球碰撞后,白球被着色的评价概率。

 

2.

另一方面,因为疾病的治愈率,红色的球也可以逐渐自己掉色,重新变成白球,便不再具有传染性。假设每一红球的治愈率是 γ,那么同样在第一天,除了一开始很快自愈的5个红球,另外5个红色的球变成白色的球的个数为 5γ, 那么总的红球恢复个数为:

 

       

 

其中,R0为初始状态已经恢复颜色的红球,I0为第一天开始时候仍然为红色的具有传染性的红球。

 

3.

上面第一天的碰撞中,我们已经知道了总的白色球被感染的数量,也算出了当天能够恢复自愈的红球,那么第一天结束时候,到底最终剩下多少个具有传染性的红球呢?这个数量其实是我们最关心的。可以理解,就像一个池子上面进水,下面放水一样。池子总的水量取决于新增的红球数量减去恢复的红球数量:

 

 

以此类推,用递归的方式,我们可以算出第二天以后的任何第n天的几个数字:即 Rn (正常白球,可能被感染数量), In (具有传播性的红球数量) 和 Rn(已经恢复颜色白球,治愈者)。 这个三个数字的和是一定的,它等于所有球的数量。但是这个几个数字此消彼长,随着疾病传播,一开始红球数量会不断增加,但是被治愈者也会不断增加。超过某个零界点,红球数量最终趋于0.

 

 

这个经典的SIR模型,也就是日前德国哥廷根教授用来判断此次疾病爆发的预测模型。他根据之前SARS模型的参数,β= 0.2586/1000000, γ=0.0821 ,即每100万次红球和白球接触后,感染概率大概26%,每一红球每天治愈概率大概8%。根据教授给的参数,我们可以绘制未来150天几个数量的变化情况如下:

 

 

上图中横坐标为天数,纵坐标为各个指标数量。其中红色曲线为每天实际感染者数量。可以发现,运用经典的SIR模型,高峰大概在80天左右。

 

 

上面即为SRI模型的数学原理,我们可以发现,其实原理是比较简单的。当然实际传播情况和人为干预和预防都是很有关系的。更加复杂的网络模型可以改善预测效果。

  • 3
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值