粗糙集理论介绍(一)(rough set)

首先介绍基本粗糙集理论,之后介绍多粒度粗糙集,优势粗糙集,邻域粗糙集等

1.基本概念
信息系统:

定义一个四元组称之为信息系统,表示为 ( U , Q , V , f ) (U,Q,V,f) (U,Q,V,f),其中:
U U U是对象集合,又称为论域,即x1,x2,x3…
Q Q Q是属性集合(包括条件属性C和决策属性D)
V V V是属性的值域
f f f是一种映射,反应对象之间的值
如下面表格即为信息系统:

UA1A2A3A4
10010
21021
31110
40211
51210

其中 U = { 1 , 2 , 3 , 4 , 5 } U=\{1,2,3,4,5\} U={1,2,3,4,5}, Q = { A 1 , A 2 , A 3 , A 4 } Q=\{A1,A2,A3,A4\} Q={A1,A2,A3,A4}, V = { 0 , 1 , 2 } V=\{0,1,2\} V={0,1,2}

知识:

粗糙集中,知识被认为是一种分类能力,根据事务特征差别将其分门别类的能力都可以看作某种知识。
论域中相互间不可分辨的对象组成的集合,是组成知识的颗粒(grannule)。知识的粒度越小,能精确的表达的概念越多。知识的表示形式:不可分辨关系/等价类,粒度是知识的最小单位。

不可分辨(等价)关系:

不可分辨率关系即等价关系,详细定义可以参见离散数学的内容。在粗糙集中,指分类过程中,相差不大的个体被归类于同一类,他们的关系就是不可区分关系。
对于任何一个属性的集合 P P P,不可分辨关系用 I N D IND IND表示,定义如下:
I N D ( P ) = { ( x , y ) ∈ U × U : f ( x , a ) = f ( a , x ) , a ∈ P } IND(P)=\{(x,y)\in U \times U:f(x,a)=f(a,x),a\in P\} IND(P)={(x,y)U×U:f(x,a)=f(a,x),aP}
不可分辨关系就是U上的等价关系。
基本集:由论域中相互间不可区分的对象组成的集合,是组成论域知识的颗粒。
如下表描述:

UR1 (颜色)R2(形状)R3(体积)
X1圆形
X2方形
X3三角形
X4三角形
X5圆形
X6方形
X7三角形
X8三角形

取不同的属性组合,可以得到不同的等价关系(粒度)为:
IND(R1)={{x1,x3,x7},{x2,x4},{x5,x6,x8}}
IND(R1,R2)={{x1},{x2},{x3,x7},{x4},{x5},{x6},{x8}}

集合的上下近似:

根据知识判断对象a是否属于集合X,由三种情况:a肯定属于集合X、a可能属于集合X也可能不属于集合X,a不可能属于集合X。关于上下近似的具体定于如下:
设U为论域(非空对象集合),I为U中的等价关系, X ⊂ U X\subset U XU,则有:

集合X关于关系I的下近似是根据享有的知识判断肯定属于X的对象所组成的最大集合,有时也成为X的正区域,记为POS(X):
I ∗ = { x ∈ U : I ( x ) ⊂ X } I_*=\{ x\in U:I(x)\subset X\} I={xU:I(x)X}

集合X关于I的上近似是由所有与X相交的非空等效类I(x)的并集,是哪些可能属于X的对象的组成的最小集合:
I ∗ = { x ∈ U : I ( x ) ∩ X ≠ ∅ } I^*=\{ x\in U:I(x)\cap X\neq \emptyset\} I={xU:I(x)X=}

如果一个集合的上下近似相等,则该集合成为精确集合,否则称之为粗糙集,其中下近似称之为该概念的正区域,上下近似的差称之为边界。上近似以为的区域称之为负区域,记为NEG(X)

B N D ( X ) = I ∗ ( X ) − I ∗ ( X ) BND(X)=I^*(X)-I_*(X) BND(X)=I(X)I(X)
I ∗ ( X ) + N E G ( X ) = 论 域 U I^*(X)+NEG(X)=论域U I(X)+NEG(X)=U

对于如下表格:

UR1 (颜色)R2(形状)R3(体积)class
X1圆形1
X2方形1
X3三角形1
X4三角形1
X5圆形2
X6方形2
X7三角形2
X8三角形2

等价类IND(R1)={{x1,x3,x7},{x2,x4},{x5,x6,x8}}
X={x1,x2,x3,x4}
这样根据前面的上下近似得求法,很容易得到:
I ∗ ( X ) = x 2 , x 4 I_*(X)={x2,x4} I(X)=x2,x4
I ∗ ( X ) = x 1 , x 3 , x 7 , x 2 , x 4 I_*(X)={x1,x3,x7,x2,x4} I(X)=x1,x3,x7,x2,x4

粗糙度:

使用粗糙度来描述粗糙集得近似程度,定义如下:
β = I ∗ ( X ) I ( X ) \beta=\frac{I_*(X)}{I^(X)} β=I(X)I(X)

粗糙隶属函数:

含糊集合没有清晰得边界,即,根据论域中现有知识无法判定某些元素是否属于该集合,在粗糙集中,不确定性概念是针对元素隶属于集合得程度而言的:
u x I X = X ∩ I ( X ) I ( X ) u_x^I{X}=\frac{X\cap I(X)}{I(X)} uxIX=I(X)XI(X)
也可以使用粗糙隶属函数来定义集合X的逼近和边界区:
I ∗ ( X ) = { x ∈ U : u x I ( x ) = 1 } I_*(X)=\{x\in U: u_x^I(x)=1\} I(X)={xU:uxI(x)=1}
I ∗ ( X ) = { x ∈ U : u x I ( x ) > 1 } I^*(X)=\{x\in U: u_x^I(x)>1\} I(X)={xU:uxI(x)>1}
B N D ( X ) = { x ∈ U : u x I ( x ) > 1 } BND(X)=\{x\in U: u_x^I(x)>1\} BND(X)={xU:uxI(x)>1}

其他数学概念:

下面这些概念需要了解,以加深对粗糙集理论的理解:
笛卡尔积,关系,二元关系,等价关系,等价类,自反性、对称性、传递性等等

  • 9
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值