机器学习实战笔记(2) 决策树(分类的方法)

本文深入解析了决策树中的信息熵和信息增益概念,通过实例介绍了如何选择最佳节点和生成分支。文章引用了一篇精彩的西瓜分类笔记,通过西瓜的属性如色泽、根蒂等,详细计算了各个属性的信息熵和信息增益,帮助读者直观理解决策树的工作原理。
摘要由CSDN通过智能技术生成

第一章节看的非常舒服,轻松就理解了k-紧邻算法和手写体识别的例子。

结果第二章给我当头一棒,反复看就看不懂啊。完全不知道译者说的名词的意思!

个人感觉译者(当然是作者限制的内容)没法形象的解释怎么个策略选择节点和生成分支。

尤其是 带划分数据集, 划分数据集特征,需要返回特征等,都无法和实际的例子结合理解。

头大之际, 只好去搜索前人的学习笔记了。

huanlan.zhihu.com/p/26 这篇笔记写的太精彩了,看了豁然开朗。什么熵,什么信息量,其实都

抵不过一个形象的西瓜的例子! 作者总结的太好了,还是周老师的书给力。

精彩的形象的描述了 怎么选择根节点,为何根节点是纹理而不是根蒂?

附带就把熵和信息增益给说明白了。

为何某个节点是“根蒂”? 因为选择根蒂后,下一步再分析别的属性去选择好瓜坏瓜需要的工作量更少。

也就是信息的“纯度”。换个角度看,就是第一级先把最重要的属性选择出来,经过第一级的分离,最重要的工作先做了,后面要做的工作就

少了。犹如:盖楼先做地基,而不是先盖顶棚啊。 这个第一级跟节点的选择就是 “地基”的概念。


当然那么多属性,肉眼是看不出来的, 怎么知道哪个属性合适做第一级? 这个时候 “信息量”和“信息增益”就合理的出来了。

如果属性少,分类少,我们肉眼就看出来if then else的流程了。如果属性特别多,怎么办? 怎么选择每层的特征?


下面是ID3算法的理解。以西瓜为例:


有色泽 根蒂 敲声 纹理 肚脐 触感 ,然后分类 好瓜 坏瓜


那么哪个属性的信息量权重最大? 可以作为根节点的属性? 这个就要以样本数据的统计结果来决定了。

也就是这个属性的信息的“重要度”。这里引入 熵和信息增益


数据集的根节点的“信息纯度“ =“熵” , 当前的数据中,9个好瓜,8个坏瓜

那么 -((8/17)*log2 (8/17) + (9/17)*log2 (9/17)) = 熵 0.998


对于“色泽”的每个取值的“熵”也就是条件熵:

“青绿” = 三个好瓜 三个坏瓜 = 1

“乌黑” = 四个好瓜 两个坏瓜 =0.918

“浅白” = 一个好瓜 五个坏瓜 =0.722


信息增益就是: 熵- (青绿熵*6/17 + 乌黑熵*6/17 + 浅白熵*5/17)= 0.10

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值