對傅立葉變換(FT)頻譜平移的理解

http://blog.sina.com.cn/s/blog_6f57a7150100o7ik.html

對於一維函數:未平移前,FT的一個周期是沿原點對稱分布的。討論DFT,假設頻率范圍為[0,1,……,M-1,M],則DFT的頻譜分布在原點0的兩側,左:[M/2,M/2-1,……,0],右側[0,……,M/2-1,M/2]

同樣,將上述道理用於理解二維函數(比如圖像數據):FT的中心位於頻率矩形的中點——假設u,v為頻率自變量,則在u方向的FT和沿v方向的FT是沿原點對稱分布的,而原始圖像的原點在左上角(故FT圖像的原點也在左上角),這就導致一幅圖像的FT圖像由相鄰的四個FT周期的1/4組成,如下圖所示:

对傅立叶变换(FT)频谱平移的理解

頻譜平移使用fftshift來重排數據,相當於把FT圖像的原點移到了頻率矩形的原點(左上角),如下圖所示:

对傅立叶变换(FT)频谱平移的理解

//關於頻率矩形:設u方向的頻率范圍為[0,M],v方向的頻率范圍為[0,N],則矩形[(0,0)(M,0)(M,N)(0,N)]即頻率矩形。

示例:

圖像生成:

>> I=zeros(255,255);

>> I(100:155,100:155)=1;

>> imshow(I)

对傅立叶变换(FT)频谱平移的理解

傅立葉變換並顯示幅值譜:

>> F=fft2(I);

>> S=abs(F);figure

>> imshow(S,[])

对傅立叶变换(FT)频谱平移的理解

圖上,四個角的亮點是由於FT的周期性導致的結果(分析見上文)。

經過頻譜平移後的圖像為:

>> Fc=fftshift(F);figure,imshow(abs(Fc),[])

对傅立叶变换(FT)频谱平移的理解

亮度區域不明顯,不方便觀察——因為頻譜的動態范圍太大了,與8比特顯示(此時中心處的明亮值佔支配地位)相比要大得多

可以知道

>> max(max(abs(F)))

ans =

      799680 %此值很大!

為此,可以使用對數變換來壓縮動態范圍。

>> S2=log(1+abs(Fc));imshow(S2,[])

对傅立叶变换(FT)频谱平移的理解

>> max(max(abs(S2)))

ans =

   13.5920

可以看到,動態范圍已降至13.5920,更方便觀察與處理。

摘錄一段:「 對數變換的一項主要應用是壓縮動態范圍,例如,傅立葉頻譜的范圍為[0,10^6]或更高,當FT頻譜顯示於已線性放至8比特的監視器上時,高值部分佔優,從而導致頻譜中低亮度值的可視細節丟失。通過計算對數,10^6左右的動態范圍會降至14 。」——Gonzalez《數學圖像處理》
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值