Large-Scale Evolutionary Multiobjective Optimization Assisted by Directed Sampling_2021TEVC
背景
大规模多目标算法的分类
- Cooperative coevolution (CC) 的算法,CCGDE3。
- Decision variable clustering based MOEAs. (这里应该是决策变量划分的算法),MOEA/DVA和LMEA。还有一个在LMEA上加一个PCA降维的算法,PCA-MOEA
3.问题转化算法,WOF,LSMOF
4.新奇的方法:LMOCSO,一个an information
feedback model (IFM)产生子代的算法等
缺点: 1和2 有的会消耗评价次数,性能受限于分组技术;其他的算法可能会耗费很多的评价次数,如LMOCSO评价次数设置为15000 X D,D为决策变量数目。
问题转化的算法,会陷入局部最优。
三个论文创新点
通俗讲解论文,实际上论文是将何成的LMOF算法中的另个方向向量进行改进or应用。LMOF的工作是通过一个单目标的进化算法来找最优参数,这个论文是通过直接采样。再加上其他的创新点等。
- 种群进化的每一带中,直接采用的方式被用来产生子代。 目标空间的解通过一些少的参考向量聚为几类。(在目标空间中聚类)。 然后,每一个类中的个体距离理想点最近的被挑选作为指导解。每一个指导解会产生两个搜索方向,然采样点在这些方向产生子代。
- 两个产生子代的过程
- 环境选择,分别使用了参考向量和非支配排序。
所提出的LMOEA-DS
三部分组成:1.identification of the guiding solutions, 2. guided double reproduction, and 3.comlementary environmental selection.
初始化
首先,种群随机的初始化。
两个参考向量集合W和W’被创建。其中W’的集合中的参考向量数目小于W的。W集合大小和种群数目一样,用来做环境选择。W’用于将目标空间划分为子区域用于目标空间中的种群聚类。
假设NW’个解被选择来产生方向,我们用W’个参考向量将目标空间中的解用K-menas聚类为NW’–m类.
比如上图,5个参考向量W’,聚类为5-2=3类。
直接采样和指导解的产生
指导解的意义是协助MOEA来发现正确的搜索方向来加速收敛。问题是理想点只有一个在目标空间中,将目标空间中的解进行聚类,是为了选择多个个体距离理想点近的解,保证一个多样性。
上图聚类之后,每一个区域都可以选择距离理想点最近的解,这样就可以选择三个而不是一个。
- Identification of Search Directions: 解的产生是决策空间中,而解的评价和比较是在目标空间。
目标空间中接近理想点的解保证一个好的搜索方向。一个解在决策空间中,和决策空间的下边界点和上边界点形成了两个搜索直线。
上图是一个三维的决策空间示意图,蓝色的曲面是PS,解x1形成两个搜索直线。实际上这个是LSMOF论文中的中的创新思想。
前面提出的W’是用于在目标空间进行划分解。每一解都找到距离最近的参考向量(参考向量和解相关联起来),每一个向量至少分配一个解。
整个种群被划分为NW’个(我认为NW’=|W’|-M;M为目标数,|.|为参考向量的个数)。(吐槽:论文符号不严谨)
上图中,蓝色圈内是一个子种群,总共有三个子种群。如果有的参考向量没有分配到解,那么就从临近的参考向量中挑出一个距离最近的,如图中的X4分配给了W3’.
明确一下NW’为挑选的距离理想点最近的解,这样每个解两个方向。 2 × N W ′ 2 \times N_W^\prime 2×N