理解 Embedder,理解 Chromium 的系统层次结构

本文详细解析Chromium的系统结构,从WebCore和WebKit到blink和content,阐述了embedder的概念。content作为blink的embedder,负责与平台无关的部分,协调多个模块。在Android平台上,WebView作为content's embedder,对接Android UI框架,而在更外层,浏览器应用被视为WebView的embedder。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

理解 Embedder,理解 Chromium 的系统层次结构

标签: Chromium

作者:易旭昕


在 Chromium 官方的文档里面,我们经常会看到 blink’s embedder 或者 content’s embedder 这样的称谓,理解 embedder 的概念,对我们理解 Chromium 的系统层次结构是十分重要的。

WebCore and WebKit

Chromium embedder 的概念来源自 WebKit。熟悉 WebKit 的会知道 WebKit 实际上分成 WebCore 和 WebKit 两个重要部分,前者是真正意义上的内核,负责资源加载的调度,解析,排版,元素的绘制,JS 的执行,网页事件的处理等等,WebCore 通常是被认为是平台无关的;而 WebKit 则是 WebCore 的一个包裹层,除了实现 WebCore 里面平台相关的部分,比如实际的绘制(光栅化,合成等),实际资源的加载(网络链接)这些以外,还包括事件的传入和传出,比如通过操作系统获取鼠标或者触屏事件传递给 WebCore,和接收 WebCore 向外发送的加载进度,JS 运行结果等事件。所以 WebKit 实际上就是 WebCore 的 embedder

Chro

### Embedder在机器学习和自然语言处理中的角色 Embedder 是一种用于将离散对象(如单词、短语或整个文档)映射到连续向量空间的技术,在这个过程中保留了原始数据之间的关系。这种嵌入方法使得计算机更容易理解和操作这些对象,尤其是在涉及高维稀疏表示的情况下。 #### 应用领域 - **文本分类**:通过将词语转换成密集型向量形式,可以帮助提高分类器的效果[^5]。 - **话题建模**:当与深度学习相结合时,比如 BERT 或 GPT 这样的预训练模型作为 embedder 使用,可以显著增强话题识别的能力[^2]。 - **对话系统优化**:对于基于强化学习构建的聊天机器人来说,高质量的文字 embedding 可以为其提供更丰富的上下文理解能力,进而改善回复的质量[^1]。 #### 实现方式 为了创建有效的 embeddings,通常会采用如下几种流行的方法之一: - **Word2Vec 和 GloVe**:这两种算法都是用来生成固定长度词向量的经典方案;它们依赖于共现矩阵或者预测框架来捕捉词汇间的相似度模式[^3]。 - **Transformer-based Models (BERT, RoBERTa)**:这类现代架构不仅考虑单个 token 的局部特征,还兼顾全局序列信息,因此能产出更为精准且具有层次结构意义的表达。 ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') inputs = tokenizer("Hello world", return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state # 获取最后一层隐藏状态 ``` 上述代码展示了如何使用 Hugging Face 提供的 `transformers` 库加载并运行一个预先训练好的 BERT 模型来进行文本编码。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值