1. 散点图
1) 分类散点图:stripplot() 与 catplot(kind=“strip”)
2) 分簇散点图: swarmplot() 与 catplot(kind=“swarm”)
1. 分类散点图
应用场景:观察两个数值变量之间的情况。如果其中一个主要变量是“分类”(分为不同的组),那么使用更专业的可视化方法比如类别关系图。
seaborn.stripplot(分类散点图)
当在同一个类别中出现大量取值相同或接近的观测数据时,他们会挤到一起。seaborn.stripplot(),它给这些散点增加了一些随机的偏移量,更容易观察。
seaborn.stripplot(x=None, y=None, data=None, # 必要参数
hue=None, # 指定二次分类的数据类别,主要用颜色区分
order=None, hue_order=None, # 显示指定分类的顺序 ,排序的变量名list的形式 []
jitter=True, # jitter参数控制着偏移量的大小
dodge=False, # dodge将第三个分类变量分开
palette=None, # 添加调色盘
color=None, # 颜色
orient=None, # 设置图像的绘制方向
size=5,
edgecolor='gray', linewidth=0,
ax=None, ### 绘制多子图时, 可以通过axes制定我们的绘制区域
**dict(marker='*',s=15,alpha=0.7),#设置点形状、大小、透明度等,更多见ma