08.python可视化-Seanorn绘制类别关系图stripplot() &swarmplot()

本文介绍了Seaborn库中的stripplot()和swarmplot()函数,用于创建分类散点图和蜂群图。这两种方法适用于观察分类变量与数值变量之间的关系。stripplot()在数据密集时通过随机偏移避免点重叠,而swarmplot()确保每个数据点都有独立的位置,避免了点的堆叠。内容包括数据集准备、分类散点图和蜂群图的绘制实例。
摘要由CSDN通过智能技术生成

1. 散点图

1) 分类散点图:stripplot() 与 catplot(kind=“strip”)

2) 分簇散点图: swarmplot() 与 catplot(kind=“swarm”)

1. 分类散点图

        应用场景:观察两个数值变量之间的情况。如果其中一个主要变量是“分类”(分为不同的组),那么使用更专业的可视化方法比如类别关系图。

seaborn.stripplot(分类散点图)

        当在同一个类别中出现大量取值相同或接近的观测数据时,他们会挤到一起。seaborn.stripplot(),它给这些散点增加了一些随机的偏移量,更容易观察。

seaborn.stripplot(x=None, y=None, data=None,     # 必要参数
hue=None,  # 指定二次分类的数据类别,主要用颜色区分
order=None, hue_order=None,  # 显示指定分类的顺序 ,排序的变量名list的形式 []
jitter=True,  # jitter参数控制着偏移量的大小
dodge=False,  # dodge将第三个分类变量分开
palette=None, # 添加调色盘
color=None,   # 颜色
orient=None,  # 设置图像的绘制方向
size=5,
edgecolor='gray', linewidth=0,
ax=None,  ### 绘制多子图时, 可以通过axes制定我们的绘制区域
**dict(marker='*',s=15,alpha=0.7),#设置点形状、大小、透明度等,更多见ma
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值