平面点集哇

文章详细阐述了平面点集中内点、边界点和孤立点的定义,以及开集和闭集的概念。讨论了有界集与无界集的区别,并引出了区域的定义,强调区域必须是连通且开的。此外,文章还介绍了光滑曲线、若尔当曲线和简单闭曲线,以及它们如何划分平面。最后,解释了单连通区域与多连通区域的区别,前者任何简单闭曲线可缩成一点。
摘要由CSDN通过智能技术生成

        开局设一平面点集\mathit{G}

邻域

                |z-z_0|<\delta,\ \; \; \; \forall \delta >0        

去心邻域

                0<|z-z_0|<\delta,\ \; \; \; \forall \delta >0

内点&边界点

           \forall z_0\in \mathit{G}, \: \: \exists U(z_0,\delta ),\: \: \delta>0, \: \:\: \forall z'\in U(z_0,\delta),\: \: s.t.\: \: z'\in \mathit{G},称z_0为G的一个内点

边界点

           \exists z_0\in \mathit{G}, \: \: \forall U(z_0,\delta ),\: \: \delta>0, \: \: \ z'\in U(z_0,\delta ) , \: \:s.t. \: \: z'\in G \: and\: C_G,称z_0为G的一个边界点,G的边界点全体称为G的边界

孤立点

z_0 \in G,\:\:\exists \overset{o}{U}(z_0,\delta ),\:\:\delta >0,\:\:s.t.\:\: z'\in \overset{o}{U}(z_0,\delta ),\:\:z'\notin G,称z_0为G的一个孤立点,孤立点必是边界点!

开集&闭集

        G内的每个点都是内点,G为开集;开集的余集称为闭集。

有界集&无界集

        如果存在一个z=0为中心的圆盘,能给G含住,称G是有界集,否则是无界集.

区域

        如果平面点集D满足如下两个条件:

        (1)D是一个开集;

        (2)D是连通的:D中任何两点都可用完全属于D的一条折线连接;

        则D也是一个区域(连通开集)

        连通也分单连通和多连通

        

        区域D与边界一起构成闭区域,记作\bar{D}(闭区域不是区域,唯一特例:全平面既是区域,又是闭区域)

例1 说出下列各式所表示的点集是怎样的图形,并指出哪些是区域;

(1)z+\bar{z}>0;\:\:\:(2)|z+2-i|\geq 1;\:\:\:(3)0<arg\:z<\frac{\pi}{3}

光滑曲线

光滑曲线的概念是用平面曲线的参数式来定义的:

如果t\in [a,b]x'(t),y'(t)都是连续的,且\forall t,\:\: s.t. \:\: [x'(t)]^2+[y'(t)]^2\neq0,那么称这曲线为光滑的;

若尔当曲线(Jordan)

或叫:简单曲线,即没有重点的连续曲线;

(重点:可以理解成曲线自身相交的点,但起点与重点重合处,不为重点)

简单闭曲线

反之,起点和终点重合,则称为简单闭曲线;

若尔当曲线定理

该定理讲的是,一个简单闭曲线将平面分成了两个区域:

简单闭曲线的内部:有界区域,

简单闭曲线的外部:无界区域。

单连通区域&多(复)连通区域

设D是一区域,对D内的任一简单闭曲线,曲线的内部总属于D,则称D是单连通区域,不是单连通区域的区域称为多连通区域.(单连通区域内的任何一条闭曲线,在D内可以缩成一点)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值