复数的铺垫知识
Def
将形如 的数称为复数,x称为z的实部,y称为z的虚部,有如下表示:
注意"形如","名字",先知道长啥样,再知道叫啥名, 显然没说不等于0.
所以复数包括实数,相当于数域的扩充了!
称为虚数单位,并规定!看好了,规定就不要问为什么,,或者
当虚部为0时,就可以把其当成实数了,当实部为0时,又称之为"纯虚数"!
先给出三个复数
两个复数相等:,则
共轭复数:是的共轭复数!
四则运算
加减
不必过多赘述,同部之间相加减即可!
乘除呢?是不是也一样呢?需要注意什么呢?
乘
用一下上边的,你会发现就像
同部合并,有 提 ,给出考题!
例1:计算 , 答案是:
除
不想多说什么!给出例子:
,就像这样,如此的简单!
唯一需要注意的是,分母是不能为0的,老生常谈了~,复数怎么说明不为0呢?
给出考题!
例2:
复数运算,满足交换,分配,结合律,不知道的自己去搜三个律,非常滴easy!
咳咳,给出考题!
例3 求证:
证 因为,所以有,证毕。
这里边用到了一个 ,嘿嘿!
再总结几个公式:
① ②
复数的三角表示
模
的模是
辐角
辐角若是用三角函数来度量,辐角应该有无穷多个的,因为两个角若是相差 的整数倍,它们的正余弦值是相等的,所以辐角有无穷多个,它们都相差的整数倍。
记号以后就是辐角的一般表示了,再用表示辐角中介于,表示主辐角
则有
把辐角的概念联系到之前的实部和虚部,用带辐角的形式来表示复数,则,同理有 ,则
令 ,,则,这里用了欧拉公式!
以下的东西要记一记,不过也好记住的!
给出考题!
例4 写出复数 的三角表达式
辐角表示的复数的乘除法
简单的一批啊!模相乘,角相加,只需要知道如下公式,什么题都迎刃而解!
推导过程如下:
因为 ,所以
令,则有
分别写出模与辐角的运算法则,如下:
(1.2)式是一个表达多值相等的式子,它的意义是:等号左边任意取定两个值加和必有等号右边的某一个值同它相等;反之也成立.
给出考题!
例5 用三角表示计算
解 因为
故
辐角表示的复数的乘幂开方
简单的一批啊!模乘幂开方,辐角乘相应的倍数
棣莫弗()
3倍角公式
则 ,