复变函数笔记①

复数的铺垫知识

Def

形如 z=x+yi(x,y\in \mathbb{R})的数称为复数,x称为z的实部,y称为z的虚部,有如下表示:

                                                            Re z=x,Im z=y.

注意"形如","名字",先知道长啥样,再知道叫啥名,x,y 显然没说不等于0.

所以复数包括实数,相当于数域的扩充了!

i 称为虚数单位,并规定!看好了,规定就不要问为什么,i^2=i\cdot i=-1,或者i=\sqrt{-1}

当虚部为0时,就可以把其当成实数了,当实部为0时,又称之为"纯虚数"!

先给出三个复数z_1=x_1+y_1i\,\, \, \, \, \,\, \, \, \, z_2=x_2+y_2i\,\, \, \, \, \,\, \, \, \, \bar{z}_1=x_1+(-y_1i)

两个复数相等:x_1=x_2, y_1=y_2,则z_1=z_2

共轭复数:\bar{z}_1z_1的共轭复数!

四则运算

加减

不必过多赘述,同部之间相加减即可!

乘除呢?是不是也一样呢?需要注意什么呢?

用一下上边的z_1,z_2,你会发现就像(a+b)(c+d)=a(c+d)+b(c+d)=ac+ad+bc+bd

同部合并,有 ii,给出考题

        例1:计算 (2-3i)(4+5i), 答案是:23-2i

不想多说什么!给出例子:

\frac{a+b}{c+d}=\frac{(a+b)(c-d)}{(c+d)(c-d)}=\frac{(a+b)(c-d)}{c^2-d^2},就像这样,如此的简单!

唯一需要注意的是,分母是不能为0的,老生常谈了~,复数怎么说明不为0呢?

                                z_1\neq 0\Leftrightarrow x_1^2+y_1^2\neq 0

给出考题

        例2\frac{3-2i}{2+3i}=? \: \: \: \: \: \: \: \: \: \: \: =\frac{(3-2i)(2-3i)}{(2+3i)(2-3i)}=\frac{0+(-13i)}{13}=-i

复数运算,满足交换,分配,结合律,不知道的自己去搜三个律,非常滴easy!

咳咳,给出考题

       例3  求证2Re(z_1\bar{z_2})=z_1\bar{z}_2+\bar{z}_1z_2

        证   因为\mathit{Re z=\frac{z+\bar{z}}{2}},所以有2Rez_1\bar{z}_2=2\cdot \frac{z_1\bar{z}_2+\bar{z}_1z_2}{2},证毕。

这里边用到了一个 \overline{z_1z_2}=\bar{z}_1\bar{z}_2,嘿嘿!

再总结几个公式:

|z|^2=x^2+y^2=z\bar{z}         ② \mathbf{\frac{1}{z}=\frac{\bar{z}}{z\bar{z}}=\frac{\bar{z}}{|z|^2}}

复数的三角表示

z_1的模是|z_1|=\sqrt{x_1^2+y_1^2}

辐角

辐角若是用三角函数来度量,辐角应该有无穷多个的,因为两个角若是相差 2\pi的整数倍,它们的正余弦值是相等的,所以辐角有无穷多个,它们都相差2\pi的整数倍。

记号Arg \, z以后就是辐角一般表示了,再用arg\: z表示辐角中介于(-\pi,\pi],表示主辐角

则有  Arg\: z=arg\: z+2k\pi,k\in \mathbb{Z}

把辐角的概念联系到之前的实部和虚部,用带辐角的形式来表示复数,则\boldsymbol{\mathit{cos\theta =cosArgz=\frac{x}{\sqrt{x^2+y^2}}=\frac{Rez}{|z|}}}Rez=|z|cosArgz,同理有  Imz=|z|sinArgz,则z=x+yi=|z|(cosArgz+i\cdot sinArgz)

\theta =Argzr=|z|,则z=r(cos\theta +i\cdot sin\theta)=re^\theta,这里用了欧拉公式!

以下的东西要记一记,不过也好记住的!

给出考题

例4  写出复数  -1-3i,\: \: 1+i,\: \: \mathrm{\frac{1}{z}}的三角表达式

-1-3i=\sqrt{10}(cos\theta +i\cdot sin\theta ),\: \: \theta =arctan3-\pi

1+i=\sqrt{2}(cos\frac{\pi}{4}+i\cdot sin\frac{\pi}{4})

\frac{1}{z}=\frac{\bar{z}}{z\bar{z}}=\frac{\bar{z}}{|z|^2}=\frac{1}{r}(cos\theta-i\cdot sin\theta ),\: \: \theta =arctan\frac{y}{x}

辐角表示的复数的乘除法

简单的一批啊!模相乘角相加只需要知道如下公式,什么题都迎刃而解!

arctanA\pm arctanB=arntan\frac{A\pm B}{1\mp AB}

推导过程如下:

因为 tan(A+B)=\frac{tanA+tanB}{1-tanAtanB},所以A+B=arctan\frac{tanA+tanB}{1-tanAtanB}

a=tanA, b=tanB,则有arctan\, a+arctan\, b=arctan\, \frac{a+b}{1-ab}

分别写出模与辐角的运算法则,如下:

|z_1\cdot z_2|=r_1\cdot r_2=|z_1|\cdot |z_2|\: \: \: \: \: \: \: \: \: \: (1.1)

Arg(z_1\cdot z_2)=\theta _1+\theta _2+2k\pi=Argz_1+Argz_2,k\in \mathbb{Z}\: \: \: \: \: \: \: \: \: \: (1.2)

(1.2)式是一个表达多值相等的式子,它的意义是:等号左边任意取定两个值加和必有等号右边的某一个值同它相等;反之也成立.

给出考题

例5  用三角表示计算  \frac{2+i}{1-2i}

解   因为

        z_1=2+i=\sqrt{5}(cos\, arctan\frac{1}{2}+isin\, arctan\frac{1}{2})

        z_2=1-2i=\sqrt{5}(cos\, arctan2+i\, sin\, arctan2)

        \mathrm{|\frac{z_1}{z_2}|}=\frac{|z_1|}{|z_2|}=1

        Arg(\frac{z_1}{z_2})=Argz_1-Argz_2=arctan\frac{1}{2}-arctan(-2)=\frac{\pi}{2}

        故\frac{z_1}{z_2}=i

辐角表示的复数的乘幂开方

简单的一批啊!模乘幂开方,辐角乘相应的倍数

        z^n=[r(cos\, \theta+i\, sin\, \theta )]^n=r^n(cos\, n\theta+isin\, n\theta )

棣莫弗(De \: \: Moivre

        (cos\, \theta+i\, sin\, \theta )^n=cos\, n\theta+isin\, n\theta

3倍角公式

        (cos\, \theta+i\, sin\, \theta )^3=cos^3\theta -3sin^2\theta cos\theta +i\cdot (3sin\theta cos^2\theta -sin^3\theta)

     则 cos\, 3\theta=cos^3\theta -3sin^2\theta cos\theta,    sin\, 3\theta=3cos^2\theta sin\theta-sin^3\theta

        

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值