复变函数的积分

文章详细阐述了解析函数的性质,包括解析区域的定义、解析函数的解析性条件、正向简单闭曲线的概念以及柯西积分定理的应用。通过实例展示了如何在多连通区域中计算复积分,并介绍了平均值公式和解析函数的高阶导数等相关概念。
摘要由CSDN通过智能技术生成

计算

定理 f(z)=u+iv \in C(L),则 \int _Lf(z)dz\:\:\: \exists

        \int _Lf(z)dz\:=\int _Ludx-vdy+i\int _Lvdx+udy

若有z(t)=x(t)+iy(t)\:\:\:(a\leq t\leq b)

                                        \int _Lf(z)dz\:=\int _a^bf[z(t)]z'(t)dt

例31  计算\int_{C}\bar{z}dz 

        (1)C=C_1;\:\:\:\:C_1=z(t)=(1-t)+it\:\:(0\leq t\leq 1)

        (2)C=C_{23}; \:\:\:\:C_2:\:\:z(t)=1-t(0\leq t\leq 1)\:\:\:\:C_3:\:\:z(t)=it(0\leq t\leq 1)

解   (2)

        \int_{C}\bar{z}dz=\int_{C_2}\bar{z}dz+\int_{C_3}\bar{z}dz

        \int_{C_2}\bar{z}dz=\int_{0}^{1}\:(1-t)(-dt)=-\frac{1}{2}

        \int_{C_3}\bar{z}dz=\int_{0}^{1}\:(-it)(idt)=\int_{0}^{1}\:tdt=\frac{1}{2}

        则\int_{C}\bar{z}dz=0

        (1)

        \int_{C}\bar{z}dz=\int_{0}^{1}\:[(1-t)-it\:](i-1)dt=(i-1)\int_{0}^{1}\:1-(1+i)t\:dt=i

        

例32  计算 \oint_{C} \frac{dz}{(z-z_0)^n},\:\:n\in \mathbb{Z},\:\: C:|z-z_0|=r

          \oint_{C} \frac{dz}{(z-z_0)^n}=\frac{i}{r^{n-1}}\int_{0}^{2\pi}cos(n-1)\theta -isin(n-1)\theta d\theta =\left\{\begin{matrix} 2\pi i,\:n=1\\0,\:\:\:\:\:n\neq 1 \end{matrix}\right.


回顾①: 这是曲线积分!我总会想到曲面,把C想成了区域C;  

               第一次回顾重点在于,这是柯西积分公式的特例:

                                \oint _C\frac{f(z)}{(z-z_0)^{n}}dz=\frac{2\pi i}{(n-1)!}\cdot f^{(n-1)}(z_0)

               而  f(z)\equiv 1,故原式 =  \oint _C\frac{1}{(z-z_0)^{n}}dz=\frac{2\pi i}{(n-1)!}\cdot1^{(n-1)}

              可知,当n=1和n>1时,都是成立的,该公式新的写法是无法表示n<1时的情况,由柯西积分公式得知,结果得0,故还是用原公式写法比较好.


        复积分的基本性质

        (5) |\int_{C}f(z)dz|\leq \int_{C}|f(z)|dz 

   

柯西积分定理

1. f(z)单连通区域D内解析,则f(z)D内沿任意一条简单曲线C的积分为0.

Morera's \:\:Law

f(z)在单连通区域D内连续,且f(z)在D内沿任意一条简单曲线C的积分为0,则f(z)在单连通区域D内解析

(若C是区域D的边界,f(z)在D内解析,在\bar{D}上连续,定理仍然成立)

如图中所说,把柯西积分定理推广到多连通区域

 

 例37  计算\oint_{C} \frac{2z-1}{z^2-z}dz,\:\:\:C为包含0与1的简单闭曲线.

     \oint_{C} \frac{2z-1}{z^2-z}dz=\oint_{C_1} \frac{2z-1}{z^2-z}dz+\oint_{C_2} \frac{2z-1}{z^2-z}dz

C_1,C_2C 内互不相交也互不包含的圆周,f(z)包含两个奇点:z=0, z=1

\oint_{C_1} \frac{2z-1}{z^2-z}dz=\oint_{C_1} \frac{1}{z}+\frac{1}{z-1}dz=2\pi i+0

\oint_{C_2} \frac{2z-1}{z^2-z}dz=\oint_{C_2} \frac{1}{z}+\frac{1}{z-1}dz=0+2\pi i

原式=4\pi i

柯西积分公式

                                        \oint_{C}\frac{f(z)}{z-z_0}dz=2\pi i\cdot f(z_0),    

                              \oint_{C_1}\frac{f(z)}{z-z_0}dz-\oint_{C_2}\frac{f(z)}{z-z_0}dz=2\pi i\cdot f(z_0),

f(z)在简单闭曲线C所围成的区域D内解析,z_0是D内任一点。

C_1,C_2所围成的多连通区域D内解析,\bar{D}上连续,C_2C_1的内部,z_0是D内任一点。

平均值公式

                                f(z_0)=\frac{1}{2\pi}\int _0^{2\pi}f(z_0+Re^{i\theta })d\theta

解析函数的高阶导数

                        f^{(n)}(z_0)=\frac{n!}{2\pi i}\oint _C\frac{f(z)}{(z-z_0)^{n+1}}dz\:(n=1,2,\cdots )

C为在函数f(z)的解析区域D内围绕z_0的任何一条正向简单闭曲线,其内部完全含于D.


在此,我们回顾该公式所涉及的所有知识!

1. 何为函数f(z)的解析区域? 如何解读?

2. 正向简单闭曲线:何为正向,何为简单,何为闭曲线?

3. 公式计算法.

分析:

1. f(z)的解析区域D,首先是一个区域,何为区域?

      区域的定义有两点:①D是开集

                                        ②D内的任何两点都可用一条完全属于D的折线连接(单连通).

      何为开集?开集定义:D这个平面点集内的每个点都是内点.

      何为内点?内点定义:对于任意一属于D的点z_0,其存在一个邻域,s.t. 其邻域内的点都属于D.

何为区域:D这个平面点集上的点都是内点,即为开集,若D又为单连通开集,则称为区域D.

何为解析区域:D这个区域上的点使得f(z)在该点获得“解析”属性

函数解析:类比函数f(z)可导,函f(z)数在某点可导,仅要求函数f(z)在讨论点满足定义即可,而函数f(z)在某点解析则要求在讨论点的某个邻域都是可导的,所以函数f(z)在某点解析可理解为函数f(z)在某点局部可导.

这里给出两个函数解析的充要条件:

        ① 函数在某点可导,则函数f(z)在该点可微,且满足C-R方程;

                何为可微:偏导连续必可微;

        ② 函数在区域D解析,则函数f(z)在D内处处可微,处处满足C-R方程;

        ③函数在区域D解析,则函数f(z)的实部和虚部互为共轭调和函数.

                何为调和函数:若f(x,y)调和函数,则f(x,y)满足:①二阶偏导数连续;②满足二维拉普拉斯方程;(   调和函数默认讨论f(x,y)  )

                何为共轭调和函数:若f(x,y),g(x,y)互为共轭调和函数,则f(x,y),g(x,y)不仅都是调和函数,且满足C-R方程.

        OK!至此,解析区域D已经剖析完毕!

 2. 正向区域:假设人沿着该方向移动,其左手一直在区域中的一种方向.

     简单曲线:即Jordan曲线,意为没有重复点的连续曲线(无交叉点,连续)

     简单闭曲线:在简单曲线的基础上,若起点和终点重合,则为简单闭曲线.


3.   f^{(n)}(z_0)=\frac{n!}{2\pi i}\oint _C\frac{f(z)}{(z-z_0)^{n+1}}dz\:(n=0,1,2,\cdots )

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值