计算
定理 设 ,则
若有
例31 计算
(1)
(2)
解 (2)
则
(1)
例32 计算
解
回顾①: 这是曲线积分!我总会想到曲面,把C想成了区域C;
第一次回顾重点在于,这是柯西积分公式的特例:
而 ,故原式 =
可知,当n=1和n>1时,都是成立的,该公式新的写法是无法表示n<1时的情况,由柯西积分公式得知,结果得0,故还是用原公式写法比较好.
复积分的基本性质
柯西积分定理
1. 在单连通区域D内解析,则在D内沿任意一条简单闭曲线C的积分为0.
若在单连通区域D内连续,且在D内沿任意一条简单闭曲线C的积分为0,则在单连通区域D内解析
(若C是区域D的边界,在D内解析,在上连续,定理仍然成立)
如图中所说,把柯西积分定理推广到多连通区域了
例37 计算为包含0与1的简单闭曲线.
解
设 是 内互不相交也互不包含的圆周,包含两个奇点:
原式=
柯西积分公式
在简单闭曲线C所围成的区域D内解析,是D内任一点。
所围成的多连通区域D内解析,上连续,在的内部,是D内任一点。
平均值公式
解析函数的高阶导数
C为在函数的解析区域D内围绕的任何一条正向简单闭曲线,其内部完全含于D.
在此,我们回顾该公式所涉及的所有知识!
1. 何为函数的解析区域? 如何解读?
2. 正向简单闭曲线:何为正向,何为简单,何为闭曲线?
3. 公式计算法.
分析:
1. 的解析区域D,首先是一个区域,何为区域?
区域的定义有两点:①D是开集;
②D内的任何两点都可用一条完全属于D的折线连接(单连通).
何为开集?开集定义:D这个平面点集内的每个点都是内点.
何为内点?内点定义:对于任意一属于D的点,其存在一个邻域,s.t. 其邻域内的点都属于D.
何为区域:D这个平面点集上的点都是内点,即为开集,若D又为单连通开集,则称为区域D.
何为解析区域:D这个区域上的点使得在该点获得“解析”属性
函数解析:类比函数可导,函数在某点可导,仅要求函数在讨论点满足定义即可,而函数在某点解析则要求在讨论点的某个邻域都是可导的,所以函数在某点解析可理解为函数在某点局部可导.
这里给出两个函数解析的充要条件:
① 函数在某点可导,则函数在该点可微,且满足C-R方程;
何为可微:偏导连续必可微;
② 函数在区域D解析,则函数在D内处处可微,处处满足C-R方程;
③函数在区域D解析,则函数的实部和虚部互为共轭调和函数.
何为调和函数:若为调和函数,则满足:①二阶偏导数连续;②满足二维拉普拉斯方程;( 调和函数默认讨论 )
何为共轭调和函数:若互为共轭调和函数,则不仅都是调和函数,且满足C-R方程.
OK!至此,解析区域D已经剖析完毕!
2. 正向区域:假设人沿着该方向移动,其左手一直在区域中的一种方向.
简单曲线:即Jordan曲线,意为没有重复点的连续曲线(无交叉点,连续)
简单闭曲线:在简单曲线的基础上,若起点和终点重合,则为简单闭曲线.
3.