向量范数和矩阵范数

向量范数和矩阵范数

1.范数意义

要更好的理解范数,就要从函数、几何与矩阵的角度去理解。
我们都知道,函数与几何图形往往是有对应的关系,这个很好想象,特别是在三维以下的空间内,函数是几何图像的数学概括,而几何图像是函数的高度形象化,比如一个函数对应几何空间上若干点组成的图形。
但当函数与几何超出三维空间时,就难以获得较好的想象,于是就有了映射的概念,映射表达的就是一个集合通过某种关系转为另外一个集合。通常数学书是先说映射,然后再讨论函数,这是因为函数是映射的一个特例。
为了更好的在数学上表达这种映射关系,(这里特指线性关系)于是就引进了矩阵。这里的矩阵就是表征上述空间映射的线性关系。而通过向量来表示上述映射中所说的这个集合,而我们通常所说的基,就是这个集合的最一般关系。于是,我们可以这样理解,一个集合(向量),通过一种映射关系(矩阵),得到另外一个几何(另外一个向量)。
那么向量的范数,就是表示这个原有集合的大小。
而矩阵的范数,就是表示这个变化过程的大小的一个度量。

总结起来一句话,范数(norm),是具有“长度”概念的函数。

2.范数满足的三个特性

1.非负性: ∣ ∣ x ∣ ∣ ≥ 0 ||x|| \geq 0 x0,且 ∣ ∣ x ∣ ∣ = 0 ||x||=0 x=0当且仅当 x = 0 x=0 x=0时成立;
2.齐次性: ∣ ∣ k × x ∣ ∣ = ∣ k ∣ × ∣ ∣ x ∣ ∣ ||k \times x||=|k| \times ||x|| k×x=k×x;
3.三角不等式: ∣ ∣ x + y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ ||x+y|| \leq ||x||+||y|| x+yx+y.

3.向量范数计算

1-范数,计算方式为向量所有元素的绝对值之和。
∣ ∣ x ∣ ∣ 1 = ∑ i n ∣ x i ∣ ||x||_1 = \sum_{i}^{n}|x_i| x1=inxi
2-范数,计算方式跟欧式距离的方式一致。
∣ ∣ x ∣ ∣ 2 = ( ∑ i n ∣ x i ∣ 2 ) 1 / 2 ||x||_2 = ( \sum_{i}^{n}|x_i|^2)^{1/2} x2=(inxi2)1/2
∞ \infty -范数,所有向量元素中的最大值。
∣ ∣ x ∣ ∣ ∞ = max ⁡ i ∣ x i ∣ ||x||_{\infty}=\max_{i}|x_i| x=imaxxi
− ∞ -\infty -范数,所有向量元素中的最小值。
∣ ∣ x ∣ ∣ − ∞ = min ⁡ i ∣ x i ∣ ||x||_{-\infty}=\min_{i}|x_i| x=iminxi
p-范数,所有向量元素绝对值的p次方和的1/p次幂。
∣ ∣ x ∣ ∣ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 / p ||x||_p=(\sum_{i=1}^{n}|x_i|^p)^{1/p} xp=(i=1nxip)1/p

4.矩阵范数计算

首先假设矩阵的大小为m ∗ n m*nm∗n,即m行n列。

在这里插入图片描述

5.参考资料

https://blog.csdn.net/bitcarmanlee/article/details/51945271?utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-2.control&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-2.control

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值