【MATLAB深度学习工具 deepNetworkDesigner的使用 包涵实例手写数字识别和LSTM预测完整代码 】

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

介绍MATLAB深度学习工具使用方法,并提供了两个应用实例,第一个是手写数字识别,第二个是用LSTM预测海洋温度变化。文中给出了完整的代码。


提示:以下是本篇文章正文内容,下面案例可供参考

一、打开方式

1)在命令框输入deepNetworkDesigner;(推荐使用)
2)如下方式,通过点击图标的形式进入:
a.点击主页的APP:
在这里插入图片描述

b. 点击所标记的下拉三角箭头
在这里插入图片描述

c.输入deep即会出现Deep Network Designer。
在这里插入图片描述

  1. 实例1 手写数字识别

二、 功能和构成

(1)Layer库
网络net是由层Layer连接而成的。
Layer库是整个神经网络的基本组成单元,非常重要,所有复杂的神经网络均通过这些基本单元进行搭建。
Layer库一共有9种,不同的种类通过颜色进行区分,可以直接拖动到中间的设计区进行连接。
1)INPUT输入层
2)CONVOLUTION AND FULLY CONNECTED卷积和全连接层
3)SEQUENCE序列层
4)ACTIVATION激活层
5)NORMALIZATION AND UTILITY归一化层
6)POOLING池化层
7)COMBINATION组合层
8)OBJECT DETECTION目标检测层
9)OUTPUT输出层
(2)设计区
设计区包含了三个卡片,Designer,Data,Training。
其中在Designer中进行Layer组件的布局;
Data中导入训练数据;
Training中进行网络训练。
(3)Analyze功能
可以对设计的网络进行评估,包含warnings和errors。另外在分析的ANALYSIS RESULT区域可以看到各层的名称Name、类型Type、维度Activations和可学习的参数Learnables。
目前的情况是,可学习的参数只有卷积和全连接层中组件的Weights和Bias。其他各组件均无待学习参数,只有一些需要配置的超参数等。
(4)Export功能
export功能可以把设计的网络导出为一个对象,加载到Workspace中;或者导出生成代码到Live Editor中便于进一步处理。

三、应用实例

1.手写数字识别

代码如下(示例):

% 加载数据集
digitDatasetPath = fullfile(matlabroot,'toolbox','nnet', ...
    'nndemos','nndatasets','DigitDataset');
imds = imageDatastore(digitDatasetPath, ...
    'IncludeSubfolders',true, ...
    'LabelSource','foldernames');
% 展示数据集
figure
numImages = 10000;
perm = randperm(numImages,20);
for i = 1:20
    subplot(4,5,i);
    imshow(imds.Files{
   perm(i)});
end
% 划分数据集和测试集出来
numTrainingFiles = 750;
[imdsTrain,imdsTest] = splitEachLabel(imds,numTrainingFiles,'randomize')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

可可2019

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值