AI学习指南RAG篇(7)-RAG知识库构建

在这里插入图片描述

一、引言

在RAG(Retrieval-Augmented Generation,检索增强生成)系统中,知识库的构建是至关重要的一步。知识库的质量直接影响到检索结果的准确性和生成内容的价值。本文将详细讲解RAG知识库的构建过程,包括数据收集、预处理、分块和向量化等关键步骤,并通过实际示例展示每个步骤的实现方法。

二、知识库构建过程

1. 数据收集

1.1 数据来源

数据收集是知识库构建的第一步,数据来源可以包括但不限于:

  • 网页:通过爬虫技术抓取互联网上的公开信息。
  • 文档:包括PDF、Word文档、TXT文件等。
  • 数据库:从结构化数据库中导出数据。
  • API:通过调用第三方API获取数据。
1.2 示例代码

以下是一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值