基于深度学习的新冠疫情数据分析

本文探讨了一种基于LSTM的组合神经网络模型,用于精确预测湖北省COVID-19疫情发展。模型通过对历史数据的深入分析,有效预测了新增确诊和累计确诊数量,表现出高精度和可靠性。对比其他模型,组合式神经网络的MRE小于0.16,MSE小于0.1,RMSE为0.2629。研究还展示了模型在武汉市和广东省的应用,证实其适用性和准确性。
摘要由CSDN通过智能技术生成

摘要:在全球抗击新型冠状病毒肺炎(COVID-19)疫情的过程中,合理的疫情传播预测对于疫情防控有重要参考意义。为了对病毒传播进行合理预测,针对传统疫情传播预测模型存在的不足,在BP神经网络提出一种组合式神经网络的疫情传播预测模型,并将其应用于湖北省1月29日-3月15日每日新增确诊人数预测及湖北省每日累计确诊人数预测。预测结果分析显示,该神经网络预测模型预测结果可靠有效。模型性能分析结果表明,组合式神经网络预测模型平均相对误差(MRE)不超过0.16,均方误差(MSE)不超过0.1,均方根误差(RMSE)为0.262 9,性能明显优于其它几种神经网络预测模型。基于武汉市与广东省疫情传播预测的实证结果显示模型具有较好的适用性及准确性。

关键词: 新型冠状病毒肺炎;组合神经网络预测模型;疫情传播;预测分析

一.文章结构

第一章主要介绍了在人类发展历史上,几个严重危害人类生命的传染病事件,以及关于传染病的研究历史,并重点介绍了现阶段各界学者对于新冠疫情的文献研究。

第二章主要介绍了神经网络的相关理论知识,具体有模型的性质、重要参数,并在此基础上提出基于神经网络的长短期记忆神经网络模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

可可2019

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值