摘要:在全球抗击新型冠状病毒肺炎(COVID-19)疫情的过程中,合理的疫情传播预测对于疫情防控有重要参考意义。为了对病毒传播进行合理预测,针对传统疫情传播预测模型存在的不足,在BP神经网络提出一种组合式神经网络的疫情传播预测模型,并将其应用于湖北省1月29日-3月15日每日新增确诊人数预测及湖北省每日累计确诊人数预测。预测结果分析显示,该神经网络预测模型预测结果可靠有效。模型性能分析结果表明,组合式神经网络预测模型平均相对误差(MRE)不超过0.16,均方误差(MSE)不超过0.1,均方根误差(RMSE)为0.262 9,性能明显优于其它几种神经网络预测模型。基于武汉市与广东省疫情传播预测的实证结果显示模型具有较好的适用性及准确性。
关键词: 新型冠状病毒肺炎;组合神经网络预测模型;疫情传播;预测分析
一.文章结构
第一章主要介绍了在人类发展历史上,几个严重危害人类生命的传染病事件,以及关于传染病的研究历史,并重点介绍了现阶段各界学者对于新冠疫情的文献研究。
第二章主要介绍了神经网络的相关理论知识,具体有模型的性质、重要参数,并在此基础上提出基于神经网络的长短期记忆神经网络模型