0. 背景
公路运输平台,如运满满,希望实现个性化货源推荐,即根据司机的用户画像、历史行为数据和天气、道路、区位、货主信用等上下文数据,挖掘其兴趣,构建行为偏好模型,从而实现个性化推荐/推送/调度货源,让司机与货物的快速、精准匹配。
涉及四个主体:司机(用户)及货车;货主及货源;或者概括为,车、货。
1. 车货匹配的场景

2. 调度与车货匹配的深度学习方案
整车调度和推荐

基于深度学习的车货匹配:

3. 价格,内容和风控的智能需求

货源内容场景:


参考:
- 公路干线运输的AI应用 罗竞佳;
- InfoQ 物流干线车货匹配推荐调度系统;
- 满帮如何将机器学习应用于车货匹配和公路干线价格预测?;