公路干线运输的AI应用

0. 背景

公路运输平台,如运满满,希望实现个性化货源推荐,即根据司机的用户画像、历史行为数据和天气、道路、区位、货主信用等上下文数据,挖掘其兴趣,构建行为偏好模型,从而实现个性化推荐/推送/调度货源,让司机与货物的快速、精准匹配。
涉及四个主体:司机(用户)及货车;货主及货源;或者概括为,车、货。

1. 车货匹配的场景

在这里插入图片描述

2. 调度与车货匹配的深度学习方案

整车调度和推荐
在这里插入图片描述
基于深度学习的车货匹配:
在这里插入图片描述

3. 价格,内容和风控的智能需求

在这里插入图片描述
货源内容场景:
在这里插入图片描述
在这里插入图片描述


参考:

  1. 公路干线运输的AI应用 罗竞佳;
  2. InfoQ 物流干线车货匹配推荐调度系统;
  3. 满帮如何将机器学习应用于车货匹配和公路干线价格预测?;
本文详细介绍了如何利用Python语言结合MySQL数据库开发一个学生管理系统。通过这一过程,读者不仅能够掌握系统设计的基本思路,还能学习到如何使用Python进行数据库操作。该系统涵盖了用户界面设计、数据验证以及数据库的增删改查等多个关键环节。 Python作为一种高级编程语言,以简洁易懂著称,广泛应用于数据分析、机器学习网络爬虫等领域,同时也非常适合用于快速开发数据库管理应用。MySQL是一个广泛使用的开源关系型数据库管理系统,具有轻量级、高性能、高可靠性良好的编程语言兼容性等特点,是数据存储的理想选择。在本系统中,通过Python的pymysql库实现了与MySQL数据库的交互。 pymysql是一个Python第三方库,它允许程序通过类似DB-API接口连接MySQL数据库,执行SQL语句并获取结果。在系统中,通过pymysql建立数据库连接,执行SQL语句完成数据的增删改查操作,并对结果进行处理。 系统采用命令行界面供用户操作。程序开始时,提示用户输入学生信息,如学号、姓名各科成绩,并设计了输入验证逻辑,确保数据符合预期格式,例如学号为1至3位整数,成绩为0至100分的整数。 数据库设计方面,系统使用名为“test”的数据库“StuSys”表,表中存储学生的学号、姓名、各科成绩及总成绩等信息。通过pymysql的cursor对象执行SQL语句,实现数据的增删改查操作。在构建SQL语句时,采用参数化查询以降低SQL注入风险。 系统在接收用户输入时进行了严格验证,包括正则表达式匹配数字范围检查等,确保数据的准确性安全性。同时,提供了错误处理机制,如输入不符合要求时提示用户重新输入,数据库操作出错时给出相应提示。 在数据库操作流程中,用户可以通过命令行添加学生信息或删除记录。添加时会检查学号是否重复以避免数据冲突,删除时需用户确认。通过上述分析,本文展示了从
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值