0. 贝叶斯网络
贝叶斯网络包括一个有向无环图(DAG)和一个条件概率表集合。DAG中每个节点表示一个随机变量,可以是可直接观测变量或隐藏变量。有向边表示随机变量的条件依赖;条件概率表每个元素对应DAG唯一的节点。
贝叶斯网络任意随机变量组合的联合条件概率分布:
P ( x 1 , x 2 , … , x n ) = ∏ i = 1 n P ( x i ∣ Parents ( x i ) ) P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} | \text { Parents }\left(x_{i}\right)\right) P(x1,x2,…,xn)=i=1∏nP(xi∣ Parents