机器学习:
伪代码实现:LR、梯度下降、最小二乘、KNN、Kmeans;
基本知识:1)监督与非监督区别;2)L1L2区别;3)生成模型和判别模型区别
算法的优缺点以及相应解决方案:k-means, KNN, apriori
算法原理:LR、KNN、k-means、apriori、ID3(C45,CART)、SVM、神经网络,协同过滤,em算法
常见问题:
1)svm算法的原理、如何组织训练数据、如何调节惩罚因子、如何防止过拟合、svm的泛化能力、增量学习
2)神经网络参数相关。比如,参数的范围?如何防止过拟合?隐藏层点的个数多了怎样少了怎样?什么情况下参数是负数?
3)为什么要用逻辑回归?
4)决策树算法是按什么来进行分类的?
5) 朴素贝叶斯公式
6) 讲em算法
7)svm中rbf核函数与高斯和函数的比较
8)说一下SVM的实现和运用过程
9)谈谈DNN
10)简单说说决策树分析
11)推荐系统中基于svd方法
12)SVM有哪些优势,(x,y,z)三个特征如何用径向基核函数抽取第四维特征
13)userCF和ItemCF在实际当中如何使用,提供具体操作,以及它们的优势(推荐系统)
14)如何用Logic regression建立一个广告点击次数预测模型
15)举一个适合采用层次分析法的例子
17)关联分析中的极大频繁项集;FP增长算法
18)线性分类器与非线性分类器的区别及优劣
19)特征比数据量还大时,选择什么样的分类器
20)对于维度很高的特征,你是选择线性还是非线性分类器
21) 对于维度极低的特征,你是选择线性还是非线性分类器
22) 如何解决过拟合问题
23) L1和L2正则的区别,如何选择L1和L2正则
24) 随机森林的学习过程
25) 随机森林中的每一棵树是如何学习的
26) 随机森林学习算法中CART树的基尼指数是什么
27)支持向量机、图模型、波尔茨曼机,内存压缩、红黑树、并行度
28) 如何搭建一个推荐平台,给出具体的想法,
29) 实现一个中文输入法
30) k-meanshift的机制,能不能用伪码实现
31)实现最小二乘法。。